netrashetty

Netra Shetty
DIC Entertainment (pronounced "deek", rendered "DiC") was an international film and television production company. In addition to animated (and occasionally live-action) television shows such as Ulysses 31 (1980), Inspector Gadget (1983–1986), The Real Ghostbusters (1986–1991), and the first two seasons of the English adaptation of Sailor Moon (1995–1998), DIC produced live-action feature films while under Disney, including 1998's Meet the Deedles and 1999's Inspector Gadget.
It was founded in 1971 as DIC Audiovisuel by Frenchman Jean Chalopin in Paris, as a subsidiary of Radio-Television Luxembourg (RTL). "DIC" was originally an acronym for Diffusion, Information et Communication. The company was also known as The Incredible World of DiC, DiC. Audiovisuel, DiC Enterprises, DIC Animation City and DIC Productions. In 2008, the studio closed its doors, and was reallocated to Cookie Jar Entertainment.[5]

Social science research, and by extension business research, uses a number of different approaches to study a variety of issues. This research may be a very informal, simple process or it may be a formal, somewhat sophisticated process. Regardless of the type of process, all research begins with a generalized idea in the form of a research question or a hypothesis. A research question usually is posed in the beginning of a research effort or in a specific area of study that has had little formal research. A research question may take the form of a basic question about some issue or phenomena or a question about the relationship between two or more variables. For example, a research question might be: "Do flexible work hours improve employee productivity?" Another question might be: "How do flexible hours influence employees' work?"

A hypothesis differs from a research question; it is more specific and makes a prediction. It is a tentative statement about the relationship between two or more variables. The major difference between a research question and a hypothesis is that a hypothesis predicts an experimental outcome. For example, a hypothesis might state: "There is a positive relationship between the availability of flexible work hours and employee productivity."

Hypotheses provide the following benefits:

They determine the focus and direction for a research effort.
Their development forces the researcher to clearly state the purpose of the research activity.
They determine what variables will not be considered in a study, as well as those that will be considered.
They require the researcher to have an operational definition of the variables of interest.
The worth of a hypothesis often depends on the researcher's skills. Since the hypothesis is the basis of a research study, it is necessary for the hypothesis be developed with a great deal of thought and contemplation. There are basic criteria to consider when developing a hypothesis, in order to ensure that it meets the needs of the study and the researcher. A good hypothesis should:

Have logical consistency. Based on the current research literature and knowledge base, does this hypothesis make sense?
Be in step with the current literature and/or provide a good basis for any differences. Though it does not have to support the current body of literature, it is necessary to provide a good rationale for stepping away from the mainstream.
Be testable. If one cannot design the means to conduct the research, the hypothesis means nothing.
Be stated in clear and simple terms in order to reduce confusion.
HYPOTHESIS TESTING PROCESS

Hypothesis testing is a systematic method used to evaluate data and aid the decision-making process. Following is a typical series of steps involved in hypothesis testing:

State the hypotheses of interest
Determine the appropriate test statistic
Specify the level of statistical significance
Determine the decision rule for rejecting or not rejecting the null hypothesis
Collect the data and perform the needed calculations
Decide to reject or not reject the null hypothesis
Each step in the process will be discussed in detail, and an example will follow the discussion of the steps.

STATING THE HYPOTHESES.

A research study includes at least two hypotheses—the null hypothesis and the alternative hypothesis. The hypothesis being tested is referred to as the null hypothesis and it is designated as H It also is referred to as the hypothesis of no difference and should include a statement of equality (=, ≥, or £). The alternative hypothesis presents the alternative to the null and includes a statement of inequality (≠). The null hypothesis and the alternative hypothesis are complementary.

The null hypothesis is the statement that is believed to be correct throughout the analysis, and it is the null hypothesis upon which the analysis is based. For example, the null hypothesis might state that the average age of entering college freshmen is 21 years.
H 0 The average age of entering college freshman = 21 years

If the data one collects and analyzes indicates that the average age of entering college freshmen is greater than or less than 21 years, the null hypothesis is rejected. In this case the alternative hypothesis could be stated in the following three ways: (1) the average age of entering college freshman is not 21 years (the average age of entering college freshmen ≠ 21); (2) the average age of entering college freshman is less than 21 years (the average age of entering college freshmen < 21); or (3) the average age of entering college freshman is greater than 21 years (the average age of entering college freshmen > 21 years).

The choice of which alternative hypothesis to use is generally determined by the study's objective. The preceding second and third examples of alternative hypotheses involve the use of a "one-tailed" statistical test. This is referred to as "one-tailed" because a direction (greater than [>] or less than [<]) is implied in the statement. The first example represents a "two-tailed" test. There is inequality expressed (age ≠ 21 years), but the inequality does not imply direction. One-tailed tests are used more often in management and marketing research because there usually is a need to imply a specific direction in the outcome. For example, it is more likely that a researcher would want to know if Product A performed better than Product B (Product A performance > Product B performance), or vice versa (Product A performance < Product B performance), rather than whether Product A performed differently than Product B (Product A performance ≠ Product B performance). Additionally, more useful information is gained by knowing that employees who work from 7:00 a.m. to 4:00 p.m. are more productive than those who work from 3:00 p.m. to 12:00 a.m. (early shift employee production > late shift employee production), rather than simply knowing that these employees have different levels of productivity (early shift employee production ≠ late shift employee production).

Both the alternative and the null hypotheses must be determined and stated prior to the collection of data. Before the alternative and null hypotheses can be formulated it is necessary to decide on the desired or expected conclusion of the research. Generally, the desired conclusion of the study is stated in the alternative hypothesis. This is true as long as the null hypothesis can include a statement of equality. For example, suppose that a researcher is interested in exploring the effects of amount of study time on tests scores. The researcher believes that students who study longer perform better on tests. Specifically, the research suggests that students who spend four hours studying for an exam will get a better score than those who study two hours. In this case the hypotheses might be:
H 0 The average test scores of students who study 4 hours for the test = the average test scores of those who study 2 hours.
H 1 The average test score of students who study 4 hours for the test < the average test scores of those who study 2 hours.

As a result of the statistical analysis, the null hypothesis can be rejected or not rejected. As a principle of rigorous scientific method, this subtle but important point means that the null hypothesis cannot be accepted. If the null is rejected, the alternative hypothesis can be accepted; however, if the null is not rejected, we can't conclude that the null hypothesis is true. The rationale is that evidence that supports a hypothesis is not conclusive, but evidence that negates a hypothesis is ample to discredit a hypothesis. The analysis of study time and test scores provides an example. If the results of one study indicate that the test scores of students who study 4 hours are significantly better than the test scores of students who study two hours, the null hypothesis can be rejected because the researcher has found one case when the null is not true. However, if the results of the study indicate that the test scores of those who study 4 hours are not significantly better than those who study 2 hours, the null hypothesis cannot be rejected. One also cannot conclude that the null hypothesis is accepted because these results are only one set of score comparisons. Just because the null hypothesis is true in one situation does not mean it is always true.
 
DIC Entertainment (pronounced "deek", rendered "DiC") was an international film and television production company. In addition to animated (and occasionally live-action) television shows such as Ulysses 31 (1980), Inspector Gadget (1983–1986), The Real Ghostbusters (1986–1991), and the first two seasons of the English adaptation of Sailor Moon (1995–1998), DIC produced live-action feature films while under Disney, including 1998's Meet the Deedles and 1999's Inspector Gadget.
It was founded in 1971 as DIC Audiovisuel by Frenchman Jean Chalopin in Paris, as a subsidiary of Radio-Television Luxembourg (RTL). "DIC" was originally an acronym for Diffusion, Information et Communication. The company was also known as The Incredible World of DiC, DiC. Audiovisuel, DiC Enterprises, DIC Animation City and DIC Productions. In 2008, the studio closed its doors, and was reallocated to Cookie Jar Entertainment.[5]

Social science research, and by extension business research, uses a number of different approaches to study a variety of issues. This research may be a very informal, simple process or it may be a formal, somewhat sophisticated process. Regardless of the type of process, all research begins with a generalized idea in the form of a research question or a hypothesis. A research question usually is posed in the beginning of a research effort or in a specific area of study that has had little formal research. A research question may take the form of a basic question about some issue or phenomena or a question about the relationship between two or more variables. For example, a research question might be: "Do flexible work hours improve employee productivity?" Another question might be: "How do flexible hours influence employees' work?"

A hypothesis differs from a research question; it is more specific and makes a prediction. It is a tentative statement about the relationship between two or more variables. The major difference between a research question and a hypothesis is that a hypothesis predicts an experimental outcome. For example, a hypothesis might state: "There is a positive relationship between the availability of flexible work hours and employee productivity."

Hypotheses provide the following benefits:

They determine the focus and direction for a research effort.
Their development forces the researcher to clearly state the purpose of the research activity.
They determine what variables will not be considered in a study, as well as those that will be considered.
They require the researcher to have an operational definition of the variables of interest.
The worth of a hypothesis often depends on the researcher's skills. Since the hypothesis is the basis of a research study, it is necessary for the hypothesis be developed with a great deal of thought and contemplation. There are basic criteria to consider when developing a hypothesis, in order to ensure that it meets the needs of the study and the researcher. A good hypothesis should:

Have logical consistency. Based on the current research literature and knowledge base, does this hypothesis make sense?
Be in step with the current literature and/or provide a good basis for any differences. Though it does not have to support the current body of literature, it is necessary to provide a good rationale for stepping away from the mainstream.
Be testable. If one cannot design the means to conduct the research, the hypothesis means nothing.
Be stated in clear and simple terms in order to reduce confusion.
HYPOTHESIS TESTING PROCESS

Hypothesis testing is a systematic method used to evaluate data and aid the decision-making process. Following is a typical series of steps involved in hypothesis testing:

State the hypotheses of interest
Determine the appropriate test statistic
Specify the level of statistical significance
Determine the decision rule for rejecting or not rejecting the null hypothesis
Collect the data and perform the needed calculations
Decide to reject or not reject the null hypothesis
Each step in the process will be discussed in detail, and an example will follow the discussion of the steps.

STATING THE HYPOTHESES.

A research study includes at least two hypotheses—the null hypothesis and the alternative hypothesis. The hypothesis being tested is referred to as the null hypothesis and it is designated as H It also is referred to as the hypothesis of no difference and should include a statement of equality (=, ≥, or £). The alternative hypothesis presents the alternative to the null and includes a statement of inequality (≠). The null hypothesis and the alternative hypothesis are complementary.

The null hypothesis is the statement that is believed to be correct throughout the analysis, and it is the null hypothesis upon which the analysis is based. For example, the null hypothesis might state that the average age of entering college freshmen is 21 years.
H 0 The average age of entering college freshman = 21 years

If the data one collects and analyzes indicates that the average age of entering college freshmen is greater than or less than 21 years, the null hypothesis is rejected. In this case the alternative hypothesis could be stated in the following three ways: (1) the average age of entering college freshman is not 21 years (the average age of entering college freshmen ≠ 21); (2) the average age of entering college freshman is less than 21 years (the average age of entering college freshmen < 21); or (3) the average age of entering college freshman is greater than 21 years (the average age of entering college freshmen > 21 years).

The choice of which alternative hypothesis to use is generally determined by the study's objective. The preceding second and third examples of alternative hypotheses involve the use of a "one-tailed" statistical test. This is referred to as "one-tailed" because a direction (greater than [>] or less than [<]) is implied in the statement. The first example represents a "two-tailed" test. There is inequality expressed (age ≠ 21 years), but the inequality does not imply direction. One-tailed tests are used more often in management and marketing research because there usually is a need to imply a specific direction in the outcome. For example, it is more likely that a researcher would want to know if Product A performed better than Product B (Product A performance > Product B performance), or vice versa (Product A performance < Product B performance), rather than whether Product A performed differently than Product B (Product A performance ≠ Product B performance). Additionally, more useful information is gained by knowing that employees who work from 7:00 a.m. to 4:00 p.m. are more productive than those who work from 3:00 p.m. to 12:00 a.m. (early shift employee production > late shift employee production), rather than simply knowing that these employees have different levels of productivity (early shift employee production ≠ late shift employee production).

Both the alternative and the null hypotheses must be determined and stated prior to the collection of data. Before the alternative and null hypotheses can be formulated it is necessary to decide on the desired or expected conclusion of the research. Generally, the desired conclusion of the study is stated in the alternative hypothesis. This is true as long as the null hypothesis can include a statement of equality. For example, suppose that a researcher is interested in exploring the effects of amount of study time on tests scores. The researcher believes that students who study longer perform better on tests. Specifically, the research suggests that students who spend four hours studying for an exam will get a better score than those who study two hours. In this case the hypotheses might be:
H 0 The average test scores of students who study 4 hours for the test = the average test scores of those who study 2 hours.
H 1 The average test score of students who study 4 hours for the test < the average test scores of those who study 2 hours.

As a result of the statistical analysis, the null hypothesis can be rejected or not rejected. As a principle of rigorous scientific method, this subtle but important point means that the null hypothesis cannot be accepted. If the null is rejected, the alternative hypothesis can be accepted; however, if the null is not rejected, we can't conclude that the null hypothesis is true. The rationale is that evidence that supports a hypothesis is not conclusive, but evidence that negates a hypothesis is ample to discredit a hypothesis. The analysis of study time and test scores provides an example. If the results of one study indicate that the test scores of students who study 4 hours are significantly better than the test scores of students who study two hours, the null hypothesis can be rejected because the researcher has found one case when the null is not true. However, if the results of the study indicate that the test scores of those who study 4 hours are not significantly better than those who study 2 hours, the null hypothesis cannot be rejected. One also cannot conclude that the null hypothesis is accepted because these results are only one set of score comparisons. Just because the null hypothesis is true in one situation does not mean it is always true.

Hey netra, i am really glad to see that people like you are sharing such a nice information and helping people. Well, i have also got some important information on DiC Entertainment and would like to share it with you so that it may help more and more people.
 

Attachments

Back
Top