Representativeness heuristic

swatiraohnlu

Swati Rao
The representativeness heuristic is a psychological term wherein people judge the probability or frequency of a hypothesis by considering how much the hypothesis resembles available data. While often very useful in everyday life, it can also result in neglect of relevant base rates and other cognitive biases. The representative heuristic was first proposed by Amos Tversky and Daniel Kahneman. In causal reasoning, the representativeness heuristic leads to a bias toward the belief that causes and effects will resemble one another (examples include both the belief that "emotionally relevant events ought to have emotionally relevant causes", and magical associative thinking).
 
In a study done in 1973, Kahneman and Tversky gave their subjects the following information:

"Tom W. is of high intelligence, although lacking in true creativity. He has a need for order and clarity, and for neat and tidy systems in which every detail finds its appropriate place. His writing is rather dull and mechanical, occasionally enlivened by somewhat corny puns and by flashes of imagination of the sci-fi type. He has a strong drive for competence. He seems to feel little sympathy for other people and does not enjoy interacting with others. Self-centered, he nonetheless has a deep moral sense."

The subjects were then divided into three groups who were given different decision tasks:

* One group of subjects was asked how similar Tom W. was to a student in one of nine types of college graduate majors (business administration, computer science, engineering, humanities/education, law, library science, medicine, physical/life sciences, or social science/social work). Most subjects associated Tom W. with an engineering student, and thought he was least like a student of social science/social work.

* A second group of subjects was asked instead to estimate the probability that Tom W. was a grad student in each of the nine majors. The probabilities were in line with the judgments from the previous group.

* A third group of subjects was asked to estimate the proportion of first-year grad students there were in each of the nine majors.

The second group's probabilities were approximated by how much they thought Tom W. was representative of each of the majors, and less on the base rate probability of being that kind of student in the first place (the third group). Had the subjects approximated their answers by the base rates, their estimated probability that Tom W. was an engineer would have been much lower, as there were few engineering grad students at the time.
 
Krosnick, a professor in Communication at Stanford, in his work has proposed that the effects that Kahneman and Tversky saw in their work may be partially attributed to information order effects. When the order of information was reversed - with probability figures coming later, a lot of the effects were mitigated.
 
Back
Top