Description
The time value of money is a very important concept in agricultural finance. It is widely used in investment evaluation, particularly for discounted cash flow analysis of investment alternatives. It is also very useful in determining values for financial transactions.

Decem bar  1993 
A.E.  Ext.  93-18 
:
Time Value  of Money  
Financial  Examples and  Calculations  
Using Tables and  Calculators  
by  
Eddy L.  LaDue  
Department of Agricultural,  Resource  and  Managerial  Economics  
College  of Agriculture  and  Life Sciences  
Cornell  University  
Ithaca, NY  
It is the policy of Cornell University actively to support equality
of educational and employment opportunity. No person shall I
be denied admission to any educational program or activity or
be denied employment on the basis of any legally prohibited
I
l
discrimination involving, but not limited to, such factors as race,
color, creed, religion, national or ethnic origin, sex, age or
handicap. The University is committed to the maintenance of
affirmative action programs which will assure the continuation
of such equality of opportunity.
1  
Table of Contents
Future  Value 
Future  value  of  a sum  (compound  interest) 
1.  Savings  accounts 
2.  Inflating farm  values  
Future value  of  a nonuniform  series  
3.  Saving  different amounts  each  year 
4.  IRA  
Future  value  of  a  uniform  series  
5.  Sinking  fund 
6.  IRA 
7.  Saving  to start farming 
Present  Value 
Present value  of  a future  sum 
8.  Stripped  treasurer 
9.  Zero  coupon  bonds 
10.  Unamortized  loan 
Present  value  of  a nonun iform  series 
11.  Bond 
12.  Unequal  payments  from  sale 
Present  value  of  a uniform  series 
13.  Land  contract 
14.  Loan  principal 
15.  Payments  on  a  loan 
16.  Farm  machinery  early  purchase  payments 
17.  Financial  lease  (annual  payment) 
18.  Financial  lease  (monthly  payments) 
19.  Loan  principal 
20.  Monthly  payments  on  a loan 
Present value  of  a uniform  infinite  series 
21.  Value  of  farmland 
Amortization 
22.  Monthly  payment  loan 
23.  Annual  payment  loan 
24.  Partial  amortization 
25.  Lease  paym ents 
2  
TIME  VALUE  OF MONEY  
Financial  Examples  and  Calculations  
Using  Tables and  Calculators  
by  
Eddy  L.  LaDue
1  
The time value  of  money  is  a  very  important  concept  in  agricultural  finance.  It  is 
widely  used  in  investment  evaluation,  particularly  for  discounted  cash  flow  analysis  of 
investment  alternatives.  It  is  also  very  useful  in  determining  values  for  financial 
transactions.  For  these  transactions,  the  interest  rate  reflects  the  time  value  of  money 
and  the  monetary  values  used  are  determined  by time value  concepts. 
This  publication  provides  a  discussion  of  the  time  value  of  money  concepts  and 
their application to financial  transactions.

A series of examples are presented to illustrate 
the  application  and  calculations  for  each  concept.  Example  calculations  are  given  in 
detail to allow  readers  to  learn the calculation  procedure.  Agricultural finance  examples 
are  used  throughout. 
Two approaches to the calculation  are provided.  One approach  uses tabled values 
of time value functions.  Specifically, the tables  provided  in  "Present Value,  Future Value 
and  Amortization:  Formulas  and  Tables"  Cornell  University  Agricultural  Economics 
Extension  90-17 are used.  Whenever a table number  (Le.  Table 6)  is used  in calculation, 
reference  is to a  table  in  that  publication. 
In  the  second  approach,  calculations  are  made  using  a  calculator  with  financial 
functions.  The calculator  referred  to is a Texas  Instruments BAli  Plus.  The calculations 
can,  of  course,  be  made  with  other  calculators,  usually  with  slightly  different  key 
identification  and  key  stroke  configuration.  In  some  cases,  more  complex variations  of 
a problem  that cannot be handled  with the tables  because table values are  presented for 
only  selected  situations,  are  illustrated  using  the  calculator.  The financial  function  keys 
referred  to  in  this  publication  are: 
Definition
N  Number  of  payments  (or  number  of  compoundings  if  no 
payments  are  involved) 
IIV  Interest  rate  per  year 
Professor of  Agricultural  Finance,  Cornell  University 

For discussion of time  value as  applied to investment decision  see Casler,  Anderson  and 
Aplin,  ·Capitallnvestment  Analysis  Using  Disoounted  Cash  Flows." 
3
PV   Present  value  (value  now) 
PMT   Payment  (per  month,  year,  quarter,  etc.) 
FV  Future  value  (value  at  the  end  of  the  period  under 
consideration) 
PlY  Payments per  year 
BEG   Payments occur at the beginning  of each  period  (month, year, 
etc.) 
END   Payments occur at  the  end  of  each  period  (month,  year,  etc.) 
CY  Compoundings  per  year  (automatically  equals  payments  per 
year  unless  specifically  set). 
It  is assumed  that the number of compoundings  per year equals the  number of payments 
per  year  and  that  payments  all  occur at  the  end  of  the  period  (year,  month,  etc.)  unless 
specifically  indicated  otherwise  (BEG  is  assumed  to  equal  END  unless  specifically 
indicated  otherwise). 
A  reader  who  plans  to  use  the  tables  can  use  this  publication  by  skipping  the 
sections  labeled  "Using  Calculators".  Similarly,  a  reader  who  plans  to  use  a calculator 
can  use  this  publication  by  skipping  the  sections  labeled  "Using  Tables'·. 
Time value  relationships  can  be  divided  into  two  basic  categories:  (1)  the  future
value of  a  monetary  amount  or  series  of  amounts,  and  (2)  the  present value of  a 
monetary  amount  or  series  of  amounts.  Although  present  value  and  future  value 
represent  a  continuum  of  the  same  relationships,  we  are  normally  interested  in 
determining a value for one  point in time,  usually the present,  or some point  in  the future. 
Amortization is  really  an  application  of  future  value  concepts.  The  discussion  of  these 
concepts  is  presented  in  three  sections:  (1)  future  value,  (2)  present  value  and  (3) 
amortization. 
FUTURE VALUE
Future  value  techniques  are  designed  to  determ ine  the  value  of  an  amount,  or 
series  of  amounts  of  money  as  of  some  fixed  point  in  time  in  the  future.  Examples 
include  the  value  of  a  savings  account  in  'five  years  or  the  value  of  a  farm  in  19  years 
when  land  values  are  increasing  at  five  percent  per  year. 
4
1. Future value of a present sum (Compound Interest)

When we are dealing with the future value of a single amount of money, we use
compound interest, or the future value of a present sum. The future value of a present
sum is calculated using equation (1):
FV =PV(1+i)n (1 )
Where: FV = Value in period n (n periods in the future)
PV = Value in period 0 (now)
=Interest rate per conversion period
n =Number of conversion periods
If each period is a year, n is the number of years into the future on which the value
is to be calculated, and i is the annual interest rate. In this case, the formula results in
normal compound interest with annual compounding. If payments are made more
frequently than annually, i is the annual rate divided by the number of payments per year
and n is the number of payments per year multiplied by the number of years.
Example 1
If $1 is invested in a savings account with a fixed interest rate of eight percent and
annual compounding, how much will be in the account in 10 years? Direct application of
the equation results in the following:
$1(1+.08)10 =1(2.16) =$2.16
Using Tables
The calculations can be made using the compound interest table (Table 1). The
factor from Table 1 for 10 years at eight percent interest is 2.158924. Multiplying the
factor times the investment gives the correct value.
2.158924($1) = $2.16
5  
Using  Calculators 
PlY  =1  
N  = 10  
FlY  = 8  FV  =  $2.16  
PN =1  
PMT  =0  
FV  =?  
If  interest  were  compounded  quarterly  instead  of  annually: 
PlY 

4  


40  (4  payments  per  year x  10 years)  
IIY 

8  
PV 


PMT 

0  FV  =$2.21 
FV 


Example .2
Pete  now  has  a farm  that  is  worth  $200,000.  If farm  values  inflate  at  an  average 
rate of four  percent  over the  next  15  years,  what  will  the farm  be  worth  at  the  end  of  the 
15  year  period? 
Using  (1):  $200,000  (1 +.04) 15  =$360,189. 
Using  Tables 
$200,000  (1.800943)  =$360,189  
?  
Table  1,  15  years,  four  percent 
Using  Calculators 
PlY  =1  
N  =15  
IIY  =4  
PV  =200,000  
PMT  =0  FV  =$360,189  
FV  =?  
6  
2. Future Value of a Nonuniform Series
The future value of a series of different amounts can be determined using the
futurevalueofaseries. Thefuturevalueofaseriesofsums iscalculated using equation
(2).
(2)
Where: FV .=Value in period (year) n 
PV0  =Amount invested in period 0  (now) 
PV

=Amount invested in period 1 
PV
n
= Amount invested in period n 
i = Interest rate
n =Number of years to future time for which the value is
calculated
Ifyou lookatthisequation closely, you willseethatthisisjustaseries ofequation
(1) calculations addedtogether. Thus, Table 1can also be usedtodeterminethefuture
value.
Example
Jason, a beginning high school freshman, is planning to save money from his
weekend and summer work on the farm to buy a car to drive back and forth to Cornell
while he is attending college. He invested $200 at the end of this summer (now) and
expects he can invest $400 one year from now, $500 in three years, and $600 in four
years(heplanstoworkon amidwestfarm between hisSophomoreandJunioryearsand
willspend allhemakes). Jason'sfatherhasagreedtoborrowthesefunds andpayJason
10 percent interest. How much money will Jason have at the end of four years?
FV
4
=200(1+.10)4+ 400(1+.10)3 + 500(1+.10)1 + 600
=200(1.4641) + 400(1.3310) + 500(1.10) + 600
=292.82 +532.40 + 550 + 600
=$1,975.22
7
Using Tables
FV = 200 (1.4641) + 400 (1.3310) + 500 (1.1) + 600
,
Table 1, 10%, 4 years Table 1, 10%, 3 years
= $1,975.22
Using Calculator
PlY = 1 PlY
=
1 PIX
= 1
N = 4
N
=
3 N
= 1
FlY = 10 FV = $292,82 IIY
=
10 FV = $532.40 IIY = 10 FV = $550,00
PV =200 PV = 400 PV
=500
PMT = 0 PMT = 0 PMT = 0
FV =? FV
=
? FV
= ?
Value =292.82 + 532.40 + 550 + 600 =$1,975.22
Example
Three years ago, Will invested $2,000 in an individual retirement account (IRA).
Two years ago, he invested $1,800 and last year he invested $1,500. If this IRA earns
interest at eight percent, how much is currently in the account?
Using Tables
Value =2,000(1.259712) + 1,800(1)664) + 1,500(1.08)
Table 1, 8%, 2 years
=2,519.42 + 2,099.52 + 1,620
=$6,238.94
Using Calculators
PlY = 1 PlY =1 PIX =1
N =3 FV= N =2 FV= N =1 FV=
FlY = 8 $2,519.42 IIY = 8 $2,099,52 IIY =8 $1,620
PV = 2,000 PV = 1,800 PV = 1,500
PMT = 0 PMT= 0 PMT = 0
FV =? FV =? FV =?
Value =$2,519.42 + $2,099.52 + 1,600 =$6,238.94
8  
3. Future Value of a Uniform Series
If the sum involved (invested) is the same each period (year), the future value can
be determined more easily, with a single calculation, using equation (3).
FV =    ~ ( 1+ i Jn -1 ]
(3)
Where: FV = Value in period (year) n (future)
PMT = Amount invested each period (year, month, etc.)
=Interest rate per period (year, month, etc.)
n =Number of periods (years or months or ... )
Using Tables
Values of the equation 3 expression in the brackets, for situations where the period
is one year, are presented in Table 4. Thus, the future value can be calculated by simply
multiplying the amount received each year by the appropriate value from Table 4.
Table 4 assumes that investments (payments) are made at the end of each year,
including the final year (at the time for which the future value is being calculated). If this
is not the case, adjustments must be made. If an investment is made at the beginning
of the period (as well as the end), use the number of years plus one in selecting the
coefficient from Table 4. If investments are made at the beginn ing of each year but none
is made at the end of the period (the time for which the future values are being
calculated), use the number of years in the period plus one in selecting the coefficient
and subtract one (1.0) from the value of the coefficient found. When the first payment
is made in one year and no payment is made at the end of the last year, subtract one
(1.0) from the coefficient for the number of years involved. The following table indicates
the appropriate values for different situations.
Payment at Table
Payment End of Value Coefficient
Payment Plan Now? Period to Use to Use
End of each year No Yes n Table
Beg. of each year Yes No n+1 Table-1
Beg. and end Yes Yes n+1 Table
End of each year
except last No No n Table-1

Table4can alsobe used todeterminetheinvestmentrequired each yearto meet
agoal orprovideagiven sum ofmoneyatthefuturepoint in time.. This isaccomplished
by dividing the coefficientfrom Table 4 into the amount required (the goal).
Example 5
Loren'sbankerhas required thatLoren developasinkingfund toprovidethefunds
for a neworchard sprayerwhich he will need in five years.
a. If he invests $5,000 per yearat the end of each yearfor the next five years and
the funds earn interest at 12 percent, how much money will be available for
purchase of the sprayer?
Using Tables
$5,000(6.3528) =$31,764
r
Table 4, five years, 12 percent
Using Calculators 
PlY  = 1  
N =5 
IIY =12 FV =$31,764 
PV = 0 
PMT =-5,000 
FV =? 
If interest were compounded monthly instead of annually:
PlY  = 1  
CIY = 12 
N =5 
IIY = 12 FV =$32,198 
PV =0 
PMT =-5,000 
FV =? 
b. If Lorenexpectsthesprayertocost$50,000 in fiveyears, andfunds areputinthe
same 12 percent account with annual compounding, how much must he invest
each year?
10  
Using Tables
$50,000 =$7,871
6.3528
Using Calculators
PlY
=1
N =5
FlY = 12 PMT =$7,870.49
PV =0
FV =50,000
PMT =?
If interest were compounded monthly instead of annually:
PlY
=1
CIY =12
N =5
IIY
=12
PMT =$7,764.51
PV =0
FV =50,000
PMT =?
c.  Ifinvestmentsweremadeatthebeginningofeachyearinsteadoftheend (annual
compounding), how much must be invested each year?
Using Tables
$50,000 =$7,027
7.1152
f
(Table 4, six years, 12 percent) - 1
Using Calculators
BEG  = BEG
PlY  = 1
N  =5 PMT =$7,027
IIY  = 12
PV  = 0
FV  =50,000
PMT  =?
d.  If payments were made now and at the end of each year, how much must be
invested?
11  
Using  Tables 
$50,000  =$6,161  
8.1152  
Using  Calculators 
Making  payment  now  is  the  same  as  making  a  payment  at  the  end  of  last  year 
(year 0).  Thus,  this payment  is  like adding  another  year  (year 0)  to the front  end 
of  the  payment  stream.  The  number  of  years  (periods)  becomes  6. 
BEG  =END  
PlY 
=1  
N  =6  
IIY  =12  
PV  =0  PMT  =$6,161  
FV  =50,000  
PMT  =?  
Example 6 
If  Joe  invests  $2,000  in  an  IRA  now  and  at  the  end  of  each  year for  the  next  15 
years,  how much will be  in the account  after he makes his 15 year payment if the account 
earns  nine  percent  per  year? 
Using  Tables 
$2,000(33.0034)  =$66,007  
/"
Table  4,  16  years,  nine  percent 
Using  Calculators 
PlY  =1  
N  =16  
IIY  =9  FV  =$66,007 
PV  =0  
PMT  = -2,000  
FV  =?  
12  
If  interest  were  compounded  quarterly: 
PlY  = 1  
CIY =4  
N  =  16  FV  =$67,764  
IIY  =9  
PV  =0  
PMT  =-2,000  
FV  =?  
Example 7
Sandy is planning to start farming in  10 years.  To get the initial funds  needed,  she 
is  working for  Farm  Credit  and  plans to  set aside  $4,000 per year  starting  now from  her 
salary in  a mutual fund  account that she expects to earn  11  percent  per year.  How much 
money will  she  have for farm  investment  in  10 years  if  moving  and  other costs  keep  her 
from  investing  at  the  end  of  the  10th  year? 
Using  Tables: 
$4,000(18.5614)  =$74,246 
./'
(Table  4,  11  years,  11  percent)  - 1 
Using  Calculators  
BEG  =BEG  
PlY  =1  
N  =10  
IIY  =11  FV  =$74,246  
PV  =0  
PMT  =-4,000  
FV  =?  
If  she  knows  she  will  need  $100,000  to  start,  how  much  will  she  need  to  invest 
each  year? 
Using  Tables: 
$100,000  =$5,387.52  
18.5614  
13  
Using Calculators:
BEG = BEG
PlY  =1 
N =10 PMT =$5,387.52
IIY = 11
PV =0
FV =100,000
PMT =?
PRESENT VALUE
Present value or "discounting" is essentially the reverse of future value. Present
value determines the current value of an amount or series of amounts to be received in
the future. In general terms, present value is the amount that you could be paid now and
be equally well off compared to receiving a specified payment or series of payments at
some specific time in the future.
4. Present Value of a Future Sum
Present value of a future sum is used to calculate the amount that one could
receive now that would be equal in value to the receipt of a specified single amount at
some point in the future. Remember, the compound interest formula told us the future
value of a current sum. Well, the present value of a sum tells us the current value of
a future sum. We can modify the compound interest formula,
FV = PV(1+i)n
by dividing both sides by (1+i)n, to get the present value formula.
PV=  Vn  
( I +r) n  
(4)
This can be reformulated as:
PV =FV (1+i)"n (5)
14  
Using Tables
Thebracketedvalue (1+ithas been placed in tabularform in Table2. Returning
toourExample 1situation, ifwewill receive $2.16 in 10yearsandfunds received
now could earn eight percent over the next 10 years, the present value of the
$2.16
= $2.16(.463193) = $1
I
Table 2, 10year, eight percent
Note that .463193 =  1 
f 2.158924, 
Table 2 Table 1
Thus, if you have Table 2you can calculate Table 1values and vice versa.
Table 1 = 1 
Table 2 
Table 2= 1 
Table 1 
Thus, the answer to Example 2 could be calculated using Table 2 values as shown
below. The modest difference between the values results from rounding in the tables.
$200,000 ( 1.0 ) =$360,188 
.555265 

Table 2, 15 years, four percent
Example 8
Tobroaden the rangeof investmentalternativesavailable,securitiesdealershave
developedstrippedtreasurieswhereeachoftheinterestpaymentsandthefinal principal
payment on a treasury note or bond are separated into separate instruments and sold
individually. Thus, you can buy the next year's interest payment on a million dollar
treasurynoteortheyear2000principal payment'on a$100,000treasurybond. Similarly,
zerocoupon bonds represent an agreement of the issuer to pay the face amountof the
bond atthe maturitydate. What is the presentvalue of the $100,000 principal payment
(or zero coupon bond) to be received in 12 years if you could earn ninepercent interest
on funds invested overthe period?
15
Using Tables
$100,000 (.355535) = $35,553
/
Table 2, 12 years, nine percent
Using Calculators
PlY
=1 
N =12 
IIY =9 PV = 35,553 
PMT =0 
FV = 100,000 
PV =? 
Example 9
TwoyearsagoJohn loanedhisson, JohnJr.,alocalgrapegrower, $20,000tobuy
additionalvineyard. The loan wasforfiveyearswithinterestcompoundedannuallyat 10
percent. but the loan was unamortized and no interest or principal was to be paid until
the end of the five yearperiod.
a. How much will John receive at the end of the five year period?
Using Tables
$20,000(1.61051) = $32,210
/"
Table 1, five years, 10 percent 
Using Calculators 
PlY  =1
N  =5
IIY =10 FV=$32,210
PV = 20,000
PMT =0
FV  =
b. If John were tosell the loan to an investortoobtainfundsforotheractivities, how
much could the investor afford to pay if she expected to earn 16 percent on all
investments?
16  
Using  Tables  
$32,210(.640658)  =$20,636  
./'
Table  2,  three  years,  16 percent  
Using  Calculators  
PN  =1 
N  =3  
IN  =  16  PV  = $20,636  
PMT  = °  
FV  =32,210  
PV  =?  
5.  Present  Value  of  a  Nonuniform  Series 
When  a  series  of  amounts  are  to  be  received  in  the  future  and  the  amounts  are 
not  all  of  the  same  magnitude,  equation  (6)  can  be  used. 
PM?;
+  (6)
(1  +  i)n
For  ease  in  use,  equation  (6)  can  be  reformulated  as:  
PV =  PMI:: (1  +  i) -1  +    ~ 1 +  i) -2  +  • •.  +  PM?;( 1 +  i) n (7)  
In  equation  (7)  form,  it  is  easy  to  see  that  this  is  just  the  sum  of  a  series  equation  5 
calculations. 
Thus,  the  present value  of the  series is just the  sum  of the  present value  of  the  individual 
amounts  in  'that  series.  That  is,  it  is  the  sum  of  a  series  of  calculations  using 
equation  5. 
Example 10
What  is the value of  a Federal  Farm  Credit  Bond with  a face value of  $1,000,  a 10 
percent interest rate with annual payments and a three year maturity,  if increasing interest 
rates  have  increased  the  normal  yield  on  such  bonds  to  15  percent  (or,  you  could  earn 
15  percent  on  available  funds  if  invested  elsewhere)? 
17  
You will receive the following amounts:
Year 1 ($1,000 x .10) = $ 100
Year 2 ($1,000 x .10) = 100
Year 3
plus
($1,000 x .10)
$1,000 face value = $1,100
Using Tables
PV = 100(.869565) +  100(.756144) +  1,100(.657516)

Table 2 Table 2
one year three years
15 percent 15 percent
= 86.96 + 75.61 + 723.27
= $885.84
If you paid $885.84 for this bond, how much would you earn? Obviously 15 percent.
Using Calculators
PlY  = 1 
N =3
IIY = 15 PV = 885.84
PMT = 100
FV = 1000
PV =?
If bond interest payments were semiannual:
PlY  = 2 
N =6
FlY  = 15 PV = 882.65
PMT = 50
FV = 1000
PV =?
Why is the present value lower with more frequent payments? The semiannual
discounting of the $1000 reduces the present value more than the earlier receipt of part
of the interest payments increases the present value.
18  
Example 11
In negotiating the sale of some machinery to his son, Harry agreed to accept
interest and principal payments of $10,000 in one year; $15,000 in two years, and
$22,000 in three years (in line with the son's ability to pay). If Harry can earn nine
percent on invested funds, how much is he receiving for the machinery?
Using Tables
PV = $10,000(.917431) + 15,000(.841680) + 22,000(.772183)

=  9,174.31 + 12,625.20 + 16,988.03 Table 2,9%,3 years
= $38,787.54
Using Calculators
PlY =1  PlY
=1
PlY
=1 
N =1
N =2 N =3
IIY =9 PV = 9,174.31 IIY =9 PV = $12,625.20 IIY =9 PV = 16,988.04
PMT =0  PMT =0 PMT =0
FV = 10,000 FV =15,000
FV = 22,000
PV =? PV =? PV =?
Value = 9,174.31 + 12,625.20 + 16,988.04 = $38,787.55
6. Present Value of a Uniform Series
If the amounts to be received in the future are the same for all consecutive years,
the present value can be obtained more simply using equation (8).
PV= PMT [1-( 1/i) -nj (8)
Where: PV =The value in period zero (now)
PMT =The amount received each period (year, month, etc.)
= The interest rate
(ann ual interest rate divided by num ber of payments per year)
n = The number of periods the amount PMT is to be received
19  
Example 12
Ann is an only child who became a banker rather than returning to the home farm.
At the time her father retired from farming, he sold the farm to Dave on a land contract.
The contract called for annual payments of $3,000 per year with interest at 10 percent.
At the time of Ann's father's death, there were 10 years remaining on the contract and
she could earn 16 percent on funds available for investment at the time. Dave offers
$15,000 to payoff the contract. Should she accept Dave's offer?
Using Tables
The bracketed part of equation 8 has been calculated for a number of values of
i and n, and presented in Table 3 for annual payments and table 5 for monthly payments.
Present values are calculated by multiplying the amount received each year by the correct
value from Table 3  or 5. 
$3,000(4.83323) =$14,500

Table 3, 10 years, 16 percent
Using Calculators
PlY 
=1 
N
=10
IIY
=16 PV =$14,500
PMT =-3,000
FV  =0
PV =?
Since she can earn 16 percent on money invested, the $3,000 per year for 10
years is equivalent to $14,500. Dave has offered $15,000. She should accept the offer.
Present value can be used to determine the principal outstanding on a loan.
Discounting removes the earnings that could be obtained on funds if they are received
now rather than in the future. For an amortized loan, the earnings generated for the
holder of the loan is the interest to be received. Thus, discounting removes the interest
from the loan payments and the present value is the current principal balance. Only the
number of payments remaining, the amount of each payment and the interest rate must
be known. Thus, the principal outstanding on Ann's contract can be calculated by
discounting the payments at the interest rate specified by the contract (10 percent).
20  
Using Tables
$3,000(6.14457) = $18,434 = principal owed
'\ 
Table 3, 10 years, 10 percent
Using Calculators
PlY  = 1 
N =10
IIY =10 PV = $18,434 = principal
PMT = -3000
FV = 0
PV =?
Example 13
Ten years ago, the Vegies National Bank made a 25 year loan at six percent
interest to a local vegetable farmer to purchase a farm. The annual payments are
$8,719.
1.  The principal outstanding is:
Using Tables
$8,719(9.7122) = $84,681
1
Table 3, 15 years, six percent
Using Calculators
PlY 
=1
N
=15
IIY =6 PV = $84,681
PMT =-$8,719
FV
=0
PV =?
2.  If an insurance company (or someone else) that is currently earning 16 percent on
newly invested funds were to buy this loan, the amount they can afford to pay for the loan
is:
21  
Using  Tables 
$8,719(5.5755)  =$48,613 

Table  3,  15  years,  16  percent 
Using  Calculators  
PlY 
=1  

=15  
IIY 
=16 
PV  = #48,612  
PMT  =- 8,719  
FV  =0  (results  differ  due to  rounding  on  tabled  values)  
PV  =?  
Example 14
Kelly  borrowed  the  funds  to  buy  new  greenhouse  space.  The  terms  of  the  loan 
are: 
$50,000  borrowed  
15  percent  interest  
25  years  repayment  period  
Annual  payments  
Using  Tables 
The  annual  payments  calculated  using  Table  3  are: 
$50,000  =$7,735.03 
6.4641

Table  3,  25  years,  15  percent 
This result can  be checked  using  amortization tables  (Table 7) where the  payment 
per  $1  for  loans  for  15  percent  for 25 years  is $0.1547. 
$.1547  x 50,000  =$7,735 
The  difference  between  the two  results  is  due to  rounding. 
Example 15
In  an  effort to stimulate lagging farm  machinery sales,  John  Deere recently offered 
a delayed  payment plan  which  required  no  interest  until  March  15  and  no payment  until 
22
December  15.  The  interest  rate  charged  was  12  percent  and  interest  was  charged  from 
the  date  of  the  purchase  or  March  15,  whichever  occurs  last.  The  loan  is  for five  years 
with  six  equal  payments  starting  December  15.  Mark  purchased  $100,000  worth  of 
machinery  on  January  15,  and  took  advantage  of  this  special  repayment  plan. 
Calculating  the  amount of each payment in this case  requires first  determining the 
amount  outstanding  on  December  15.  The  interest  can  be  calculated  as, 
  =$9,000  
12  
leaving  a  total  of  $109,000  outstanding  on  December  15. 
Using  Tables 
Since  the first  payment  is  due  on  December  15,  the  Table  3 value  must  be  modified  to 
reflect  the  immediate  payment.  As of  December  15,  the  present  value  coefficient for the 
December  15,  payment  must  be  1.0,  thus,  adjusting for the  immediate  payment  involves 
adding  1.0 to the  coefficient for the  remaining five  payments.  The  annual  payments are: 
$109.000  =$23,671.05  
4.60478,  
(Table  3,  five  years,  12  percent)  + 1.0 
Clearly,  if the  finance  plan  required  "no  interest  until  December  15",  the  payment  would 
be: 
$100.000  =$21,716.56 
4.60478 
Using  Calculators 
No  Interest  Until  March  15  No  Interest  Until  December  15 
BGN  =  BGN  BGN  =BGN 
PlY
=1
PlY
=1
N  =6  N  =6 
IIY  =12  PMT  =23,671.07  IIY  =12  PMT  = 21,716.58 
PV  =  109,000  PV  =  100,000 
FV =0  FV =0 
PMT  =?  PMT  =? 
The  difference  between  values  using  calculator  and  tables  is due  to  rounding  of  table 
values. 
23  
Example 16
The appropriate value to enter on the balance sheet for a financial lease is the
present value of the future lease payments discounted at the firms incremental borrowing
rate or the implicit rate on the lease. Thus, present value can be used to calculate the
value of leases.
Jim is in the process of completing his 12/31 (end of year) balance sheet. On
March 31, two years and nine months ago, Jim leased a farrowing unit from Telmark.
The payments were $15,000 per year for seven years with all payments at the beginning
of the year. The incremental borrowing rate for Jim's business was 12 percent. Three
payments have been made (two years nine months ago, one year nine months ago, and
nine months ago). The remaining four payments are due at the end of each of the next
four years (ending March 31), so normal present values can be used for them. The
present value of the remaining payments as of the last payment date (March 31, of the
coming year) are:
Using Tables
$15,000(3.03735) =$45,560
'/
Table 3, four years, 12 percent
Using Calculators
PIV =1
N =4
IIV =12
PMT = -15,000 PV =$45,560
FV =0
PV = 
Example 17
Lynda is currently leasing a tractor for $500 per month. The implicit interest rate
on the lease is 11 percent. She has 29 payments left to make. What is the present
value of the lease?
Using Tables
$500(25.3641) =$12,682
'\
Table 5, 29 months, 11 percent
24  
Using  Calculator 
PlY  =12 
N  = 29 
IIY  =  11  PV  =  $12,682 
PMT  = -500 
FV  = 0 
PV  =? 
If  the  implicit  rate  on  the  lease  were  11.23  percent,  all  entries  are  the  same  except  IIY 
=  11.23  and  the  present  value  of  the  lease  is  $12,648. 
Example 18
A number of years ago,  Dan  borrowed  funds  at  13 percent interest to purchase an 
orchard  sprayer.  His  payments  are  $157.60  per  month.  He  still  has  47  payments  to 
make.  What  is  the  outstanding  principal  on  the  loan? 
Using  Tables 
$157.60(36.6790)  = $5,780.61 

Table  5,  47  months,  13  percent 
Using  Calculators 
PlY  =12 
N  = 47 
IIY  =  13  PV =  $5,780.61 
PMT  =  157.60 
FV  = 0 
PV  =? 
Example 19
Mark  is  borrowing  $10,000  to  buy  a  pickup.  If  it  is  borrowed  at  nine  percent  for  30 
months,  how  much  will  his  monthly  payments  be? 
Using  Tables 
$10.000  =$373.48  
26.7751  

Table  5,  30  months,  nine  percent 
25  
Using Calculators
PlY =12

N =30
IIY = 9 PV = $373.48
• 
PV = 10,000
FV = 0
PV =?
If Mark uses dealer financing he can get interest at 2.99 percent by giving up a $500
rebate. In this case, all entries would bethe same except IIYwouldequal2.99 and PV
would equal 10,500. The payment would be $363.68.
7. Present Value of a Uniform Infinite Series
If the same amountwill be received each yearforever, the present value can be
calculated even moresimply. In this case, the annual amount is divided bythe interest
or discount rate, equation (9).
PV = Ali  (9)
Example 20
One of the methods used to determine the value of farmland is to capitalize the
annual rent the land is expected to earn (known as the income approach to appraisal).
Thisis referredtoasthecapitalized valueof land. Ifthenetreturn tolandforaparticular
appleorchardisestimatedat$315 peracreandtheappropriatecapitalization rate isnine
percent, the capitalized value of the land equals:
$315=$3,500/acre
.09
However, if theexpectedapple price drops $0.20/bushel, and the orchard has an
average yield of 500 bushels, the expected annuaI income declines to $215 and the
capitalized value equals:
$215 =$2,389/acre
.09
AMORTIZATION
As impliedearlier, theequationforthepresentvalue ofa uniform series (equation
8) can be rearrangedtoprovide an equation forcalculatingthe payments required on a
loan, oramortization values. The amortization equation, thus, is equation 10.
26
(10) 
• 
• 
Where  PV  =  the  amount  to  be  amortized  or the value  of the  loan  in  period  zero 
(now). 
PMT  =  the  amount  of  each  payment 

the  interest  rate  per  period  (annual  rate  divided  by  the  number  of 
payments  per  year) 

=
number  of  payments  (periods)  the  PMT  amount  is  to  be  paid. 
Using  Tables 
From  equation  10 it  is clear that the amount of the payments on  a  loan  can  be calculated 
by dividing  the  loan  amount  by the  present value factor from  tables  3 or 5  (as  illustrated 
in  Examples  14  and  15).  It  is also  clear  that  the  amount  of  payment  per  dollar  of  loan 
can  be  calculated  as the  reciprocal  of  the  bracketed  amount  in  equation  10. 
To  make  amortization  calculations  more  straightforward  values  of  that  reciprocal 

[1-( \+i) -n]
are  calculated  and  presented  in  tables  7  and  8.  These  tables  indicate  the  amount  of 
payment  per  dollar  of  loan. 
Example 21
Aaron  is  selling  the  farm  real  estate  to  his  son,  Alan.  They  have  agreed  that  the  price 
of the  real  estate  is $450,000  and  that  Alan  will  pay 7.5  percent  interest.  How much are 
Alan's  monthly payments  if  the  money  is  paid  back over 20 years? 
Using  Tables  
450,000  (.008056)
,
=$3,625.20  
Table  8,  20  years,  7.5%  
27  
Using  Calculators  
PlY  =12
• 
N  = 240  
IIY  =7.5  PMT =  3,625.17  
PV  = 450,000  
FV  = 0  
PMT  =?  
The  difference  between  results  determ ined  using  tables  and  those  using  calculators  is 
due to  roundin g  of  table  values. 
Example 22 
Steve  is  borrowing the money from  his  mother to get started  in  farming.  She has  agreed 
to lend  him  $75,000 and take a  second  priority  lien  on  his  line of  equipment.  They have 
agreed  that  he  will  repay  the  loan  over  7  years  at  6.5  percent  interest  with  annual 
payments.  How much  are  his  payments? 
Using  Tables 
75,000  (.182332)  =  $13,675 
I
Table  7,  7  years,  6.5  percent 
Using  Calculators  
PlY  =  1  
N  =7  
IIY  =  6.5  PMT  =  $13,675  
PV  = 75,000  
FV  =0  
PMT  =?  
Example 23 
Mary  is  planning  to  buy  the  home  farm  from  her  parents.  The  farm  is  valued  at 
$500,000.  They expect to ultimately will her half  of  the farm  and  plan to put the  principal 
Mary  repays  in  a  separate  account  which,  along  with  the  remaining  monthly  payments, 
will be willed to Mary's nonfarming sister,  Susan.  Thus they want a loan that will amortize 
half  of  the  principal  (partial  amortization)  and  provide  Mary's parents  with  income on  the 
• 
complete  farm  value  during  their  lifetimes.  With  this  type  of  loan,  how much  will  Mary's 
monthly  payments  be  if  the  loan  is  for 25 years  at  8.25  percent  interest. 
• 
28  
Using Calculators
PN =12
N =300 (25 x 12)
IN = 8.25 PMT = $3,690
PV =500,000
FV  =-250,000 (500,000 x .5)
PMT =?
Example 24
George plans to lease his line of equipm ent to his daughter, Amanda. They have agreed
that the equipment is now worth $150,000 and at the end of the 5 year lease period it will
be worth about $25,000. If, through the lease, George wants to earn 7.8 percent interest
on the money he has invested, and be paid for the machinery that is "used up", at what
level should they set Amanda's monthly lease payments?
Using Calculators
PN =12
N
=60
IN =7.8 PMT = $2,685.10
PV =150,000
FV  =-25,000
PMT =?

OTHER  AGRICULTURAL  ECONOMICS  EXTENSION  PUBLICATIONS  
No.  93-09 
.t
No.  93-10 
No.  93-11 
No.  93-12 
No.  93-13 
No.  93-14 
No.  93-15 
No.  93-16 
No.  93-17 
Dairy  Farm  Business  Summary 
Northern  Hudson  Region  1992 
Dairy  Farm  Business  Summary 
Southeastern  New  York  Region  1992 
Dairy  Farm  Business  Summary  Oneida-
Mohawk  Region  1992 
Dairy  Farm  Business  Summary 
Western  Plateau  Region  1992 
Winding  Down  Your  Farm  operation 
Dairy  Farm  Business  Summary 
Eastern  New  York  Renter  Summary 
1992 
Supercenters:  The  Emerging  Force 
in  Food  Retailing 
Farm  Income  Tax  Management  and 
Reporting  Reference  Manual 
New  York  Economic  Handbook  1994 
Agricultural  Situation  and  Outlook 
Stuart  F.  Smith 
Linda  D.  Putnam 
Cathy  S.  Wickswat 
John  M.  Thurgood 
Stuart  F.  Smith 
Linda  D.  Putnam 
Alan  S.  White 
Gerald  J.  Skoda 
Stephen  E.  Hadcock 
Larry  R.  Hul1e 
Eddy  L.  LaDue 
Jacqueline  M.  Mierek 
Charles  Z.  Radick 
George  L.  Casler 
Andrew  N.  Dufresne 
Joan  S.  Petzen 
Michael  L.  Stratton 
Linda  D.  Putnam 
John  R.  Brake 
Stuart  F.  Smith 
Linda  D.  Putnam 
Gene  A.  German 
Gerard  Hawkes 
Debra  Perosio 
George  L.Cas1er 
Stuart  F.  Smith 

Ag  Ec  Staff 
,. 
,) 
i

doc_540197109.pdf
 

Attachments

Back
Top