# CAT DOSE 1.........find d answers ..

#### rohit_pn

##### Par 100 posts (V.I.P)
Q1. How many numbers between 1 to 550 are divisible by 5 but
not by 9?

Q2. How many numbers between 1 to 165 are not divisible either
by 8 or by 6?

Q3. How many numbers between 1 to 1950 are divisible either
by 5 or by 11?

Q4. A= set of numbers from 1 to 275. There are 55 numbers in A
that are divisible by X and 39 numbers in A that are divisible by Y.
How many numbers in A are divisible by both X and Y?

Q5 and Q6 are based on following information:
A = set of first N positive numbers. There are 46 numbers in N
divisible 8 and 31 numbers in N divisible by 12. N takes the
maximum possible value which satisfy the mentioned
conditions.
Q5. What is the value of N?
Q6. How many numbers in N are divisible by both 8 and 12?

Q7 and 8 are based on following information:
A= set of numbers from 1 to 530. 69 numbers are divisible by X
but not by Y. 42 numbers are divisible by Y but not by X. 75
numbers are divisible by X.
Q7. How many numbers are divisible by Y?
Q8. How many numbers in A are not divisible by any of X and Y?

Q9. What is the sum of the set of numbers satisfying 2^n <1000
where n>1?

Q10. How many numbers between 1 to 300 can be
represented in form x^y, where both x and y are distinct positive
even numbers?

Q11. How many numbers between 1 to 300 can be represented
in form x^y where both x and y are positive integers and x>y>1?

Q12. How many numbers between 1 to 250 can be represented
in form x^y where y>x>1?

Q13. S= set of numbers that are divisible by 7. P = set of
numbers divisible by 17. R = set of even numbers less than 500.
How many numbers are common in the three sets?

Q14. Find the number of numbers between 1 to 460 that are odd
and divisible by 7.

Q15 and Q16 are based on following information:
A = set of first N positive numbers. There are 16 numbers in A
which are divisible by both X and Y. There are 50 numbers in A
divisible by X but not by Y and 34 numbers in A divisible by Y but
not by X.
Q15. How many numbers in A are divisible by any of the two
numbers ?
Q16. How many numbers in N are divisible by X?

Q17 and 18 are based on the following information:
A girl has a certain number of sweets. She gives half to her
brother and then takes back 4 from him. Now she gives half of
what she has to her mother and takes back one from her. Later
she gives half of what she has to her father and takes back one
from him. In the end she gives half of what she has to her sister
and she is left with 5 sweets.
Q17. How many sweets was she less at the end from the
starting point?
Q18. How many did sweets did her brother have at the end
(Assume he had none in the beginning)?

Q19 and 20 are based on following information:
A girl has certain number of flowers. One by one she goes to her
brother, sister, father and mother to ask for more flowers.
Each one of them gives her the same number of flower she has
with her to double her flowers. Also after she gets the flower from
each of them she throws away one flower in a pond. At the end
she is left with 49 flowers.
Q19. How many flowers did she have in the beginning?
Q20. How many flowers did she get from her sister whom she
visited second?

MATCH THE WORDS IN SET A WITH THEIR MEANINGS IN SET B

SET A:
21. Prophylactic 22. Sapient 23.Supercilious 24. Capitation
25. Holocaust

SET B:
A. Haughtily aloof.
B. Silly or foolish.
C. Used to prevent or guard against disease.
D. Wholesale sacrifice or destruction, esp. by fire.
E. Factually accurate
F. Wise and discerning
G. Tax levied against each person

• gaurav200x

#### rohit_pn

##### Par 100 posts (V.I.P)
CAT DOSE 1(SOLUTIONS)

NOTE : BETWEEN TWO NUMBERS MEANS THAT THE TWO
NUMBERS ARE EXCLUDED AND "FROM A TO B " MEANS THAT
THE TWO NUMBERS A AND B ARE INCLUDED.

Ans 1. Number of numbers divisible by 5 = Truncate (549/5)= 109
Number of number divisible both 5 and 9 (LCM of 5 and 9 =45)
= truncate (449/45)= 12
So numbers divisible by 5 but not by 9 = 109-12= 97.

Ans 2. Numbers divisible by 8 = Truncate (164/8)= 20
Numbers divisible by 6 = Truncate (164/6)= 27
LCM of 8 and 6 = 24
Numbers divisible by 24= Truncate (164/24)= 6
Numbers divisible by 8 or 6 or both = 20+27-6= 41
Number of number between 1 to 165 ( 1 and 165 not counted) =
165 -2 = 163
So number not divisible by 8 nor by 6 = 163-41= 122

Ans 3. Numbers divisible by 5 = Truncate (1949/5)= 389
Numbers divisible by 11 = Truncate (1949/11)= 177
LCM of 5 and 11= 55
Numbers divisible by both = Truncate (1949/55)= 35
So number divisible either by 5 or 11 = 389+177-35= 531

Ans 4. If 55 numbers are divisible by X then X will be
Truncate (275/55)= 5
Similarly Y = truncate(275/39) = 7
LCM of 7 and 5 = 35.
Numbers divisible by 35 = truncate (275/35) = 7
So 7 numbers will be divisible by both X and Y.

Ans 5. 46*8 = 368. If you add 8 to 368 then there will be 47
numbers divisible by N. So the maximum we can add and still
have 46 numbers divisible by 8 is 7. 368 +7 = 375.
Now 31*12= 372. We can add another 11 to it and still have 31
numbers divisible by 12.
But if we add 11 we will have more numbers divisible by 8.
So the maximum value of N = 375

Ans 6. LCM of 8 and 12 = 24
Numbers divisible by both 8 and 12 = truncate (375/24) = 15

Ans 7. As 75 numbers are divisible by X and 69 numbers are
divisible by X but not by Y , we can say that there are 75-69= 6
numbers divisible by both X and Y.
Since 42 numbers are divisible by Y and not by X and 6 numbers
are divisible by both X and Y, we can say that 42+6= 48 numbers
are divisible by Y.

Ans 8. Numbers not divisible by any of X and Y = Total numbers-
(Divisible by X not Y + Divisible by Y not X + Divisible by both X
and Y)
= 530- (69+42+6)
= 413.

Ans 9. n can take value 2,3,4,5,6,7,8,9 as 2^10 = 1024 which is
greater than 1000.
So 2+3+4+5+6+7+8+9= 44

Ans 10. 10 numbers : 2^4, 2^6, 2^8, 4^2, 6^2, 8^2, 10^2, 12^2, 14^
2, 16^2
Note : 2^2, 4^4 are not possible as the numbers need to be
distinct.

Ans 11. 18 numbers. 3^2, 4^3, 4^2, 5^3, 5^2, 6^3, 6^2, 7^2, 8^2,
9^2, 10^2,11^2, 12^2,13^2,14^2,15^2,16^2,17^2. (Remember x>
y>1)

Ans 12. 7 numbers. 2^3, 2^4, 2^5, 2^6, 2^7, 3^4, 3^5.

Ans 13. We need to find the numbers that are even, less than
500, divisible by 7 and 17 both.
LCM of 7, 17 and 2 = 238.
only 238 and 476 are common elements in the three sets.

Ans 14. There are truncate(459/7) = 65 numbers less than 459
divisible by 7.
Out of these 65 numbers, the 2nd, 4th, 6th......64th number will
be even. so there will be 32 even numbers of these 65 numbers.
The remaining 33 numbers will be odd.
So there are 33 numbers less than 460 that are odd and
divisible by 7.

Ans 15. The number of numbers divisible by any of two numbers
= Numbers divisible by both + number divisible by X and not by Y
+ number divisible by Y but not be X.
= 16+50+34= 100

Ans 16. Number of numbers divisible by X = Numbers divisible
by X and not by Y + numbers divisible by both.
= 16+50 = 66.

Ans 17 and 18.
Before she gave to her sister she had 5+5= 10
Changes when she went to her father: 10 -1 = 9, 9*2= 18
Changes when she went to her mother : 18-1= 17, 17*2= 34
Changes when she went to her brother : 34-4= 30, 30*2= 60.

Ans 17. In end she had 5 and in the beginning she had 60, so
she was 55 short at the end.

Ans 18. She gave 30 to her brother but took back 4 so her brother
has 26 sweets.

Ans 19 and 20:
Starting from the end we get :
When she went to her mother, 49+1= 50, 50/2= 25
When she went to her father , 25+1= 26, 26/2= 13
When she went to her sister , 13+1= 14, 14/2= 7
When she went to her brother, 7+1= 8, 8/2= 4.

Ans 19. She had 4 flowers in the beginning.
Ans 20. She got 7 flowers from her sister.

Ans 21.=C, Ans 22.= F , Ans 23.=A, Ans 24.=G, Ans 25.=D

#### rohit_pn

##### Par 100 posts (V.I.P)
CAT DOSE 2

Hi,
Another 25 questions for you to solve in 20 minutes. These
questions may appear to be time consuming, but 20 minutes is all you need to solve them.

CAT DOSE 2

Q1. What is the remainder when factorial 11 divided by 17?

Q2. What is the remainder when factorial 10 is divided by
19?

Q3. What is the remainder when factorial 9 is divided by
13?

Q4. What is the remainder when 3^16 divided by 19?

Q5. What is the remainder when 4^15 divided by 13?

Q6. What is the remainder when 7^10 divided by 11?

Q7. What is the remainder when sum of the square and cube
Of 49 is divided by 23?

Q8. What is the remainder when sum of the square and cube
Of 58 is divided by 14?

Q9. What is the remainder when sum of the square and cube
Of 69 is divided by 16?

Q10. What is the remainder when difference of the 5th power
and the 4th power of 59 is divided by 11?

Q11. What is the remainder when difference of the 6th power
and the 4th power of 30 is divided by 13?

Q12. What is the remainder when difference of the 8th power
and the 5th power of 13 is divided by 12?

Q13. What is the remainder when the sum of Square of 111
and cube of 222 is divided by 11?

Q14. What is the remainder when the sum of Square of 125
and cube of 175 is divided by 15?

Q15. What is the remainder when the sum of Square of 103
and cube of 229 is divided by 9?

Q16. What is the remainder when the sum of the first 17
terms of a geometric progression series 6, 18, 54… is
divided by 13?

Q17. What is the remainder when the sum of the first 14
terms of a geometric progression series 9, 36, 144… is
divided by 14?

Q18. What is the remainder when the sum of the first 11
terms of a geometric progression series 12, 60,300….
is divided by 23?

Q19. What is the remainder when the sum of 99 consecutive
prime number greater than 555 is divided by 2?

Q20. What is the remainder when the product of 1000
consecutive prime number greater than 1000 is divided
by 2?

MATCH THE WORDS IN SET A WITH THEIR MEANINGS IN SET B

SET A:
21. Ambidextrous
22. Insular
23. Meringue
24. Nepotism
25. Pell-mell

SET B:
A. Directed toward the left side.
B. Relating to or pertaining to an island.
C. Favoritism to a relative.
D. In a confused or messy manner.
E. To throw water at somebody.
F. Difficult to handle something, due to its large and
awkward size.
G. That may be read with ease.
H. Pastry decoration (as topping) made of white of eggs and
sugar.
I. To select the best option.
J. Able to use both the hands equally well.

#### rohit_pn

##### Par 100 posts (V.I.P)
cat dose 2 solutions

Q1. What is the remainder when factorial 11 divided by 17?
SOL. 11*10*9*8*7*6*5*4*3*2 / 17
11*10 / 17 = 8
9*8 / 17= 4
7*6 / 17= 8
5*4*3*2 / 17 = 1
Now the remaining balances are 8*4*8*1
64 / 17 = 13
13* 4 / 17= 1

Q2. What is the remainder when factorial 10 is divided
By 19?
SOL 10*9*8*7*6*5*4*3*2 / 19
10*2 / 19 = 1
9*3 / 19 = 8
8*5 / 19= 2
7*6 / 19= 4
4 /19= 4
now we are left with 8*2*4*4 /19
8*2*4 / 19= 7
now left 7*4
7*4 /19 = 9

Q3.What is the remainder when factorial 9 is divided by 13?
Sol. 9*8*7*6*5*4*3*2 /13
9*8 / 13 = 7
7*6 / 13 = 3
5*4*3*2 /13= 3
now left with 7*3*3
7*3*3 / 13= 11

Q4. Find the remainder when 316 is divided by 19?
Sol. When 34 is divided by 19 the remainder is 5
So (34)4 is divided by 19 the remainder will be 54.
When 54 (=625) is divided by 19 the remainder is 17.

Q5. Find the remainder when 415 is divided by 13?
Sol. When 43 is divided by 13 the remainder is -1
So (43)5 is divided by 13 the remainder will be
(-1)5=-1=12

Q6. Find the remainder when 710 is divided by 11?
Sol. When 73 is divided by 11 the remainder is 2
So(73)3.71 is divided by 11 the remainder will be 23.71
When 23.71(=56) is divided by 11 the remainder is 1.

Q7. What is the remainder when sum of the square and cube
of 49 is divided by 23?
Sol. 492+493 = 492(1 + 49) = 492x50= (46+3)x(46+3)x(46+4)
Term containing 46 will be divisible by 23 so
remaining part ==> 3 x 3 x 4 = 36
Remainder= ==> 13

Q8. What is the remainder when sum of the square and cube
of 58 is divided by 14?

Sol.582+583 = 582(1 + 58) = 582x59=(56 + 2)x(56 +2)x(56 + 3)
Term containing 56 will be divisible by 14 so
remaining part ==> 2x2x3 = 12
Remainder ==> 12

Q9. What is the remainder when sum of the square and cube
of 69 is divided by 16?

Sol.692 + 693 = 692(1+69) =692x70= (64+5) x (64+5) x (64 + 6)
Term containing 64 will be divisible by 16 so
remaining part ==> 5x5x6 = 150
Remainder ==> 6

Q10. What is the remainder when difference of the 5th power
and the 4th power of 59 is divided by 11?

Sol.(595-594)= 594 (59-1) = (55+4)4 x(55+3) ==> 44x3
= 162 x 3 = (11+5)2 x 3 ==> 52 x 3 = 75
Remainder ==> 9

Q11. What is the remainder when difference of the 6th power
and the 4th power of 30 is divided by 13?

Sol. 306 - 304 = 304 x (302 - 1) = (26+4)4 [(26+4)2 - 1 ]
==> 44 x [42 -1] = 162 x 15 = (13+3)2x(13+2)
==> 32 x 2 = 18
rem = 5

Q12. What is the remainder when difference of the 8th power
and the 5th power of 13 is divided by 12?

Sol. 138 – 135 = 135 x (133 - 1) = (12+1)5 x [(12+1)3 - 1]
==> 15 x [ 13 - 1 ] = 0

Q13. What is the remainder when the sum of Square of 111
and cube of 222 is divided by 11 ?
Sol. 1112 + 2223 = 1112 + (111 x 2)3 = 1112 + 1113 x 23 =
1112 x (1 + 111 x 8 ) = (110+1)2 x [1 + (110+1) x 8]
==> 12 x [1 + 1 x 8] = 9

Q14. What is the remainder when the sum of Square of 125
and cube of 175 is divided by 15 ?
sol. 1252 + 1753 = (120 + 5)2 + (165 + 10)3
==> 52 + 103 = 1025
rem 1025 / 15 = 5

Q15. What is the remainder when the sum of Square of 103
and cube of 229 is divided by 9 ?
sol. 1032 + 2293 = (99+4)2 + (225+4)3
 42 + 43 = 42 x 5 = (9+7 ) x 5
 ==> 7*5 = 35
rem 35 / 9 = 8

NOTE:
The sum of the first n terms of a geometric progression is:
a(1 - rn )
1 – r
where a = first term of AP, r = common ratio , n = no. of terms.

Q16. What is the remainder when the sum of the first 17
terms of a geometric progression series 6,18,54,....
is divided by 13?

sol. 6 x (317 - 1) / (3 - 1) = 3 x (317 - 1)
= 3 x (9 x 315 - 1) = 3 x (9 x 275 - 1)
= 3 x {9 x (26+1)5 – 1} ==> 3 x (9 x 15 -1)
= 3 x 8 = 24
rem 24 / 13 = 11

Q17. What is the remainder when the sum of the first 14
terms of a geometric progression series 9,36,144,....
is divided by 14 ?
sol. 9 x (414 - 1) / (4 - 1) = 3 x (414 - 1) = 3 x (167 - 1)
= 3 x {(14+2)7 – 1} ==> 3 x ( 27 - 1)
= 3 x ( 8 x 24 - 1) = 3 x ( 8 x (14+2) - 1)
==> 3 x ( 8 x 2 - 1 ) = 3 x (14 + 1) ==> 3

Q18. What is the remainder when the sum of the first 11
terms of a geometric progression series 12,60,300....
is divided by 23?
sol. 12 x (511 - 1) / (5-1) = 3 x (511 - 1)
= 3 x (5 x 510 - 1) = 3 x (5 x 255 - 1)
= 3 x (5 x (23+2)5 - 1)
==> 3 x (5 x 25 - 1) = 3 x {5 x (23+9) - 1}
==> 3 x (5 x 9 - 1) = 3 x (46 - 2) ==> -6
rem -6 / 23 = 17

Q19. What is the remainder when the sum of 99 consecutive
prime number greater than 555 is divided by 2?
sol. All primes other than 2 are odd. Adding 99 odd nos.
gives a sum that is odd, so divided by 2 gives
remainder 1

Q20. What is the remainder when the product of 1000
consecutive prime number greater than 1000 is divided
by 2?
sol. All primes other than 2 are odd. Product of any no.
of odd nos. is odd, so divided by 2 gives remainder 1

Ans 21= J, Ans 22= B, Ans 23= H, Ans 24= C, Ans 25= D

#### rohit_pn

##### Par 100 posts (V.I.P)
cat dose 3

CAT DOSE 3

Let N1 = 3000
N2 = 3600

For N1 & N2 find the answer of the following question.

1. Total no. of factors.
2. Total no. of odd factors.
3. Total no. of even factors.
4. Total no. of prime factors.
5. Total no. of composite factors.
6. No. of factors which are divisible by 2.
7. No. of factors which are divisible by 3.
8. No. of factors which are divisible by 5.
9. No. of factors which are divisible by 9.
10. No. of factors which are divisible by 10.
11. No. of factors which are divisible by 12.
12. No. of factors which are divisible by 15.
13. No. of factors in which last digit is zero.
14. No. of factors in which last two digit is zero.
15. No. of factors in which last digit is five.
16. By what no. N1 & N2 should be divided such that it will become an odd no?
17. In how many ways N1 & N2 can be written as product of two no.?
18. In how many ways N1 & N2 can be written as product of two different no.?
19. In how many ways N1 & N2 can be written as product of two no. such that these two no. are in ordered pair.
20. In how many ways N1 & N2 can be written as product of two even no.?
21. In how many ways N1 & N2 can be written as product of two odd no.?
22. In how many ways N1 & N2 can be written as product of two no.such that one is even & other is odd?
23. In how many ways N1 & N2 can be written as product of two perfect squares?
24. In how many ways N1 & N2 can be written as product of two non perfect squares?
25. In how many ways N1 & N2 can be written as product of two no. such that one of them is perfect square and other is non perfect squares.

ENGLISH

Q  Fill up the blanks numbered  …..…..  in the paragraph given below by choosing from the options given.
The sidereal shenanigans were a key …1…. in Colbert’s grand plan to make France a …2…. superpower, as part of which he also …3… tax breaks to anybody interested in sailing off to exotic foreign parts and coming back with import deals for high-end consumables. Idea behind this being, Colbert could then turn this trade into a French …4.. and make …5… of ecus for king and country. Well, King!
This perfectly …6…. scheme for …7… tax was yet another offer too good to refuse, so in no time at all, …8….. were returning from Senegal in West Africa with shiploads of gold, ivory, slaves and gum. Senegal gum turned out to be just what you need to machine-print chintz with fast colours, because the gum acts as a …9….. agent.
1 a element b ramification c corollary d effects
2 a hostile b mercantile c antagonistic d commercial
3 a took b offered c accessible d gave
4 a cartel b alliance c monopoly d lobby
5 a oodles b few c many d numerous
6 a unlawful b illicit c legitimate d interesting
7 a paying b initiating c affirming d avoiding
8 a freebooters b dealers c bargainers d brokers
9 a cleaning b washing c printing d dye-binding

Q  Fill up the gaps given in each statement with a pair of words as given in the options.
1 Fall was so cold in Madison, wind ……. off the lakes and ……. everything.
A billowing, stabbing B emanating, wounding
C deriving, trouncing D blowing, penetrating

2 Outside taxis blared and buses hissed, but the store itself was quiet, an urban version of Fabrications, run by a …… of heavy, besuited salesladies who watched wordlessly from behind the cutting tables as I ….. around.
A phalanx, strolled B pack, meandered
C battalion, rove D bevy, strayed

3 It was …… that as I recently ran into the Paris church now known as the Pantheon, out of yet another rain storm …… in from the Atlantic, I was filming a sequence about the guy who told us why the rain always comes from that direction.
A sarcastic, far-reaching B sardonic, carrying
B ironic, sweeping C derisive, blowing

#### rohit_pn

##### Par 100 posts (V.I.P)
cat dose 3 solutions

CAT DOSE “3” SOLUTION

N1 = 3000
= 23 x 53 x3

1. Total no. of factors=32
2. Total no. of odd factors =8
3. Total no. of even factors =24
4. Total no. of prime factor =3
5. Total no. of composite factors=28
6. No. of factors which are divisible by 2= 24
7. No. of factors which are divisible by 3.=16
8. No. of factors which are divisible by 5.=24
9. No. of factors which are divisible by 9.=6
10. No. of factors which are divisible by 10.=18
11. No. of factors which are divisible by 12.=8
12. No. of factors which are divisible by 15.=12
13. No. of factors in which last digit is zero.=18
14. No. of factors in which last two digit is zero.=8
15. No. of factors in which last digit is five.=6
16. By what minimum no. N1 & N2 should be divided such that it will become an odd no=8
17. In how many ways N1 & N2 can be written as product of two no.=16
18. In how many ways N1 & N2 can be written as product of two different no.=16
19. In how many ways N1 & N2 can be written as product of two no. such that these two no. are in ordered pair.=32
20. In how many ways N1 & N2 can be written as product of two even no.=8
21. In how many ways N1 & N2 can be written as product of two odd no..=0
22. In how many ways N1 & N2 can be written as product of two no.such that one is even & other is odd.=8
23. In how many ways N1 & N2 can be written as product of two perfect squares.=0
24. In how many ways N1 & N2 can be written as product of two non perfect squares.=12
25. In how many ways N1 & N2 can be written as product of two no. such that one of them is perfect square and other is non perfect squares.=4.

N2 = 3600
=24 x 32 x 52

1. Total no. of factors=45
2. Total no. of odd factors =9
3. Total no. of even factors =36
4. Total no. of prime factor =3
5. Total no. of composite factors=41
6. No. of factors which are divisible by 2= 36
7. No. of factors which are divisible by 3.=30
8. No. of factors which are divisible by 5.=30
9. No. of factors which are divisible by 9.=15
10. No. of factors which are divisible by 10.=24
11. No. of factors which are divisible by 12.=18
12. No. of factors which are divisible by 15.=20
13. No. of factors in which last digit is zero.=24
14. No. of factors in which last two digit is zero.=9
15. No. of factors in which last digit is five.=6
16. By what minimum no. N1 & N2 should be divided such that it will become an odd no=16
17. In how many ways N1 & N2 can be written as product of two no.=23
18. In how many ways N1 & N2 can be written as product of two different no.=22
19. In how many ways N1 & N2 can be written as product of two no. such that these two no. are in ordered pair.=45
20. In how many ways N1 & N2 can be written as product of two even no.=14
21. In how many ways N1 & N2 can be written as product of two odd no..=0
22. In how many ways N1 & N2 can be written as product of two no.such that one is even & other is odd.=9
23. In how many ways N1 & N2 can be written as product of two perfect squares.=6
24. In how many ways N1 & N2 can be written as product of two non perfect squares.=0
25. In how many ways N1 & N2 can be written as product of two no. such that one of them is perfect square and other is non perfect squares.=17

ENGLISH

Q  Fill up the blanks numbered  …..…..  in the paragraph given below by choosing from the options given.
The sidereal shenanigans were a key …1…. in Colbert’s grand plan to make France a …2…. superpower, as part of which he also …3… tax breaks to anybody interested in sailing off to exotic foreign parts and coming back with import deals for high-end consumables. Idea behind this being, Colbert could then turn this trade into a French …4.. and make …5… of ecus for king and country. Well, King!
This perfectly …6…. scheme for …7… tax was yet another offer too good to refuse, so in no time at all, …8….. were returning from Senegal in West Africa with shiploads of gold, ivory, slaves and gum. Senegal gum turned out to be just what you need to machine-print chintz with fast colours, because the gum acts as a …9….. agent.
1 a element
2 b mercantile
3 b offered
4 c monopoly
5 a oodles
6 c legitimate
7 d avoiding
9 d dye-binding

Q  Fill up the gaps given in each statement with a pair of words as given in the options.
1 Fall was so cold in Madison, wind ……. off the lakes and ……. everything.
D blowing, penetrating

2 Outside taxis blared and buses hissed, but the store itself was quiet, an urban version of Fabrications, run by a …… of heavy, besuited salesladies who watched wordlessly from behind the cutting tables as I ….. around.
A phalanx, strolled

3 It was …… that as I recently ran into the Paris church now known as the Pantheon, out of yet another rain storm …… in from the Atlantic, I was filming a sequence about the guy who told us why the rain always comes from that direction.
B ironic, sweeping

#### karma

##### Par 100 posts (V.I.P)
rohit tu sathiagaya baap re mera to sir ghum raha hai

#### gaurav200x

##### Gaurav Mittal
Good work Rohit! but dont give out the answers immediately... Wait for 2-3 days and then give them... Giving away the answers immediately, mars the spirit of doing anything.

You can add more CAT dosages here... but remember what i said!

#### rohit_pn

##### Par 100 posts (V.I.P)
cat dose 4

CAT DOSE 4

Q1. In a remote place called Telinagar a measuring unit called
Dholi is used. One Dholi is equal to 459 grams. A merchant from
nearby area come to Telinagar and declares that he sells his
goods at cost price, but he cheats his customers by using 408
grams as one Dholi. What is his gain %?

Q2. In a place called ChandanPur a measuring unit called
Keena is used which is equal to 737 grams. A merchant there
declares that he sells his goods at cost price but uses a false
weight. If he gains 10 % in each transaction what weight in
grams does he use as 1 Keena?

Q3. In a remote place called PetrolNagar a measuring unit
called Chalka is used, 1 chalka is equal to 23 Palka and 1 palka
is equal to 37 Grams. A merchant from DieselNagar comes to
PetrolNagar and cheats his customers by using 20 Palkas (
Each Palka equals 37 Grams) as equal to 1 Chalka. What is
gain % if he declares that he sell his good a cost price?

Q4. In a place called ChintuVihar a measuring units called Ralle
is used. A merchant declares that he sell his goods at cost price
but uses a false weight of 620 Grams as 1 Ralle , thereby
making a profit of 25 %. How many grams are equal to 1 Ralle?

Q5. In place called WiseManVihar a measuring unit called
Peena is used which is equal to 361 grams. A merchant from
FoolishManVihar comes to WiseManVihar and uses a wrong
weight of 380 Grams as 1 Peena. The merchant sells his goods
at cost price thinking he will gain by using the false weight. Find
is Loss %.

Q6. In a place called MurakhVihar a measuring unit called Hallu
is used which is equal to 756 grams. A merchant there sells his
goods at cost price and uses a wrong weight. If he loses 12.5 %
in each transaction, what weight does he use as 1 Hallu?

Q7. In a remote place a measuring unit called Gurrah is used, 1
Gurrah is equal to 15 Hallya and 1 Hallya is equal to 81 Grams.
A merchant by mistake uses 20 Hallaya as equal to 1 Gurrah.
What is his Loss % if he sell his good a cost price?

Q8. In a remote place a measuring units called Mudin is used. A
merchant sells his goods at cost price and uses a wrong weight
of 1,880 Grams as 1 Mudin, thereby losing 2.5 %. How many
grams are equal to 1 Mudin?

Q9. In a remote place called Malinagar a measuring unit called
Mathin is used. One Mathin is equal to 594 grams. A merchant
from nearby area come to Malinagar and declares that he sells
his goods at cost price, but he cheats his customers by using
550 grams as one Mathin. What is his gain %?

Q10. In a place called MadanPur a measuring unit called Kaful is
used which is equal to 702 grams. A merchant there declares
that he sells his goods at cost price but uses a false weight. If he
gains 12.5 % in each transaction what weight in grams does he
use as 1 Kaful?

Q11. In a remote place called TrainNagar a measuring unit
called Guni is used, 1 Guni is equal to 27 Gindi and 1 Gindi is
equal to 33 Grams. A merchant from PlaneNagar comes to
TrainNagar and cheats his customers by using 25 Gindis (
Each Gindi of 33 Grams) as equal to 1 Guni. What is his gain %
if he declares that he sell his good a cost price?

Q12. In a place called BantuVihar a measuring units called Fanu
is used. A merchant declares that he sell his goods at cost price
but uses a false weight of 1040 Grams as 1 Fanu , thereby
making a profit of 5 %. How many grams are equal to 1 Fanu?

Q13. In place called HoshiyarNagar a measuring unit called
Badi is used which is equal to 1221 grams. A merchant from
SustNagar comes to HoshiyarNagar and uses a wrong weight of
1,320 Grams as 1 Badi. The merchant sells his goods at cost
price thinking he will gain by using the false weight. Find is Loss
%.

Q14. In a place called LateVihar a measuring unit called Sattu is
used which is equal to 638 grams. A merchant there sells his
goods at cost price and uses a wrong weight. If he loses 12 %
in each transaction, what weight in grams does he use as 1
Sattu?

Q15. In a remote place a measuring unit called Kandalee is
used, 1 Kandalee is equal to 49 Dharud and 1 Dharud is equal
to 16 Grams. A merchant by mistake uses 50 Dharud (Each
Dharud equals 16 grams) as equal to 1 Kandalee. What is is
Loss % if he sell his good at cost price?

Q16. In a remote place, a measuring unit called Channi is
used. A merchant sells his goods at cost price and uses a
wrong weight of 850 Grams as 1 Channi, thereby losing 4 %.
How many grams are equal to 1 Channi?

Q17. A merchant declares that he sells his goods at cost price
but at the same time he uses 900 grams instead of 1000 grams.
What is his gain % if his cost price was Rs 55.55 per Kg.?

MATCH THE WORDS IN SET A WITH THEIR MEANINGS IN SET B:

SET A

Q18. Spartan
Q19. Sycophant
Q20. Fallible
Q21. Tangible
Q22. Clamorous
Q23. Preclude
Q24. Surfeit.

SET B
A. Liable to err.
B. Exceptionally brave
C. Overindulgence or Excessive in quantity.
D. To exceed or surpass quality or achievement.
E. Motion or gesture accompanying speech.
F. Eat too much though one is not hungry.
G. Person who flatters a powerful person or boss.
H. To get nervous due to lack of experience.
I. To steal somebody's money
J. Perceptible by touch.
K. Demanding immediate attention.
L. To make something impossible.

#### rohit_pn

##### Par 100 posts (V.I.P)
cat dose 4 solutions

CAT DOSE 5 SOLUTIONS

Ans1. 12.5% profit
Ans2. 670 grams
Ans3. 15% profit
Ans4. 775 Grams
Ans5. 5% loss
Ans6. 864 Grams
Ans7. 25% loss
Ans8. 1,833 grams
Ans9. 8 % gain
Ans10. 624 grams
Ans11. 8% gain
Ans12. 1,092 Grams
Ans13. 7.5 % Loss
Ans14. 725 grams
Ans15. 2 % loss
Ans16. 816 Grams
Ans17. 11.11%
Ans18. B
Ans19. G
Ans20. A
Ans21. J
Ans22. K
Ans23. L
Ans24. C

#### jaywant007

##### New member
material helped a lot

#### r_pooja_82

##### New member
Rohit!Ossum wrk done....Kudos 2 u....I will love to have more of same & I request u to make all those posts thru' Word Documents Only...Will be a lot easier for all to use..
Thnks in anticipation....