The highest mountain discovered is Olympus mons on mars

poornima lagadapati

Active member
Olympus Mons is the largest volcano in the solar system. The massive Martian mountain towers high above the surrounding plains of the red planet, and may be biding its time until the next eruption.

Characteristics
Found in the Tharsis Montes region near the Martian equator, Olympus Mons is one of a dozen large volcanoes, many of which are ten to a hundred times taller than their terrestrial counterparts. The tallest of them all towers 16 miles (25 kilometers) above the surrounding plains and stretches across 374 miles (624 km) — roughly the size of the state of Arizona.

In comparison, Hawaii's Mauna Loa, the tallest volcano on Earth, rises 6.3 miles (10 km) above the sea floor (but its peak is only 2.6 miles above sea level). The volume contained by Olympus Mons is about a hundred times that of Mauna Loa, and the Hawaiian island chain that houses the Earthly volcano could fit inside its Martian counterpart.

qwR7zkzBgrcyHyWqRwjJVK-1200-80.jpg
Olympus Mons compared to Arizona. (Image credit: NASA)

Olympus Mons rises three times higher than Earth's highest mountain, Mount Everest, whose peak is 5.5 miles above sea level.

Olympus Mons is a shield volcano. Rather than violently spewing molten material, shield volcanoes are created by lava slowly flowing down their sides. As a result, the mountain has a low, squat appearance, with an average slope of only 5 percent.

Six collapsed craters, known as calderas, stack on top of one another to create a depression at the summit that is 53 miles wide (85 km). As magma chambers beneath the calderas emptied of lava, most likely during an eruption, the chambers collapsed, no longer able to support the weight of the ground above.

A cliff, or escarpment, surrounds the outer edge of the volcano, reaching as high as 6 miles (10 km) above the surrounding area. (The cliff alone is about as tall as Mauna Loa.) A wide depression surrounds the base of the volcano as its immense weight presses into the crust.

Olympus Mons is still a relatively young volcano. Although it has taken billions of years to form, some regions of the mountain may be only a few million years old, relatively young in the lifetime of the solar system. As such, Olympus Mons may still be an active volcano with the potential to erupt.

"On Earth, the Hawaiian islands were built from volcanoes that erupted as the Earth's crust slid over a hot spot — a plume of rising magma," said Jacob Bleacher, a planetary scientist at Arizona State University and NASA's Goddard Space Flight Center in Greenbelt, Md, told Space.com. "Our research raises the possibility that the opposite happens on Mars; a plume might move beneath stationary crust."

The tallest volcano in the solar system may also house rock glaciers — rocky debris frozen in ice. Snow and ice deposits above the base of the shield could result in such glaciers. Water-ice insulated by surface dust may exist near the top of the volcano. The tops of these glaciers may host ridges, furrows, and lobes, and be covered by rocks and boulders, and could be as young as four million years old.
 
At 21.9 km, the enormous shield volcano Olympus Mons on Mars is the tallest mountain on any planet in the Solar System. For 40 years, following its discovery in 1971, it was the tallest mountain known in the Solar System.
 
Back
Top