Executive Ofce of the President
President’s Council of Advisors on
Science and Technology
August 7, 2009
REPORT TO THE PRESI DENT
ON U. S. PREPAR ATI ONS FOR
2 0 0 9 -H1N1 I NFLUENZA
ii ii iii
About the President’s Council of Advisors on
Science and Technology
The President’s Council of Advisors on Science and Technology (PCAST) is an advisory group of the
nation’s leading scientists and engineers, appointed by the President to augment the science and tech-
nology advice available to him from inside the White House and from cabinet departments and other
Federal agencies. PCAST is consulted about and often makes policy recommendations concerning the
full range of issues where understandings from the domains of science, technology, and innovation
bear potentially on the policy choices before the President. PCAST is administered by the White House
Ofce of Science and Technology Policy (OSTP).
For more information about PCAST, see www.ostp.gov/cs/pcast.
ii ii iii
Members
Rosina Bierbaum
Dean, School of Natural Resources
and Environment
University of Michigan
Christine Cassel
President and CEO
American Board of Internal Medicine
Christopher Chyba
Professor, Astrophysical Sciences and
International Afairs
Director, Program on Science and Global Security
Princeton University
S. James Gates, Jr.
John S. Toll Professor of Physics
Director, Center for String and Particle Theory
University of Maryland, College Park
Shirley Ann Jackson
President
Rensselaer Polytechnic Institute
Richard C. Levin
President
Yale University
Chad Mirkin
Rathmann Professor, Chemistry, Materials
Science and Engineering, Chemical and
Biological Engineering, Biomedical Engineering,
and Medicine
Director, International Institute of
Nanotechnology
Northwestern University
Mario Molina
Professor, Chemistry and Biochemistry
University of California, San Diego
Professor, Center for Atmospheric Sciences at the
Scripps Institution of Oceanography
Director, Mario Molina Center for Energy and
Environment in Mexico City
Ernest J. Moniz
Cecil and Ida Green Professor of Physics and
Engineering Systems
Director, MIT’s Energy Initiative
Massachusetts Institute of Technology
Craig Mundie
Chief Research and Strategy Ofcer
Microsoft Corporation
Ed Penhoet
Director, Alta Partners
Chairman of the Board, Immune Design
Chairman of the Board, Metabolex
William Press
Raymer Professor in Computer Science and
Integrative Biology
University of Texas at Austin
Maxine Savitz
Vice President
National Academy of Engineering
Barbara Schaal
Chilton Professor of Biology
Washington University, St. Louis
Vice President, National Academy of Sciences
Te President’s Council of Advisors on
Science and Technology
Co-Chairs
John P. Holdren
Assistant to the President for
Science and Technology
Director, Ofce of Science
and Technology Policy
Eric Lander
President and Director
Broad Institute of Harvard
and MIT
Harold Varmus
President
Memorial Sloan-Kettering
Cancer Center
iv iv v
Eric Schmidt
Chairman and CEO
Google, Inc.
Daniel Schrag
Sturgis Hooper Professor of Geology
Professor, Environmental Science and
Engineering
Director, Harvard University-wide Center for
Environment
Harvard University
David E. Shaw
Chief Scientist, D. E. Shaw Research
Senior Research Fellow, Center for
Computational Biology and Bioinformatics,
Columbia University
Ahmed Zewail
Linus Pauling Professor of Chemistry and Physics
Director, Physical Biology Center
Professor, Chemistry and Physics
Director, Physical Biology Center
California Institute of Technology
Staf
Deborah Stine
Executive Director, PCAST
Mary Maxon
Deputy Executive Director, PCAST
iv iv v
EXECUTIVE OFFICE OF THE PRESIDENT
PRESIDENT’S COUNCIL OF ADVISORS ON SCIENCE AND TECHNOLOGY
WASHINGTON, D.C. 20502
August 7, 2009
President Barack Obama
The White House
Washington, DC 20502
Dear Mr. President:
We are pleased to transmit to you the report, U.S. Preparations For 2009-H1N1 Infuenza, prepared by your
Council of Advisors on Science and Technology (PCAST). This report examines the strategic issues raised by
the likely resurgence this fall of the novel infuenza virus called 2009-H1N1.
The report reviews the full range of response options for minimizing negative impacts from a fall 2009-H1N1
epidemic and provides an integrated set of recommendations about how to think about hard issues and
key policy decisions regarding the epidemic. The nation’s response to the threat of a fall epidemic involves
decisions by government on a wide range of issues --- medical, scientifc, social, and fnancial. We have tried
to assess these, keeping in mind your interest in having the best available scientifc insights and perspectives
to inform your thinking about the nation’s response to the continued spread of this new virus.
To provide a solid scientifc basis for our recommendations, the Council assembled a PCAST Working Group
of non-governmental experts, including one other member of PCAST, from a number of relevant felds (virol-
ogy, public health, pediatrics, medicine, epidemiology, immunology, and others). On July 16-17, the Working
Group met with government ofcials and others to discuss various aspects of the 2009-H1N1 pandemic,
and then developed an in-depth report based on its own knowledge, the information provided during the
meeting, and additional consultations with government, academic, and industry experts. The results of that
report were presented to PCAST at its meeting on August 6-7, and the Council then approved an Executive
Report of fndings and recommendations for transmittal to you along with the in-depth Working Group
report to PCAST.
The Working Group report discusses the complexities posed by infuenza epidemics, and the uncertainties
inherent in an epidemic that is still in progress. The report identifes the key decisions and actions to be
taken, while recognizing that many decisions (for example, relating to use of vaccines and to school closures)
cannot be resolved now but will need to be made rapidly as the epidemic unfolds. In these instances, the
Working Group report instead ofers guidance about how decisions should be made over the coming weeks
and months.
PCAST hopes that its Executive Report and the full Working Group report help lay a foundation for the medi-
cal, scientifc, social, and fnancial decisions you and others in the Federal Government must make this fall.
We are grateful for the opportunity to serve you and the country in this way.
Sincerely,
John P. Holdren
Co-Chair
Eric Lander
Co-Chair
Harold Varmus
Co-Chair
vii
vii
Te President’s Council of Advisors on
Science and Technology
Executive Report
U.S. Preparations for the 2009-H1N1 Infuenza
In April 2009, a novel infuenza A (H1N1) virus (2009-H1N1) appeared in Mexico, causing pneumonias
and 59 deaths in Mexico City alone. The virus soon spread to the United States and to other continents.
Within two months, the World Health organization (WHO) declared that the viral outbreak met the
criteria of a level 6 pandemic. Although initial concerns of an extremely high fatality rate have receded,
the expected resurgence of 2009-H1N1 in the Fall poses a serious health threat to the United States.
Since the initial report of the outbreak, the Federal Government, through various departments, agen-
cies, and ofces, has been actively studying the course of events, responding to them, and planning
for a resurgence of the pandemic this fall. In late June, President Obama requested that his Council of
Advisors on Science and Technology (PCAST) undertake an evaluation of the 2009-H1N1epidemic and
the nation’s response to a probable recurrence.
In this Executive Report, PCAST assesses the emerging Federal response to a second wave, identifes criti-
cal questions and gaps in this response, and suggests additional opportunities for mitigation. PCAST’s
observations, conclusions, and recommendations presented here are based on the analysis of its 2009-
H1N1 Working Group, consisting of 3 PCAST members and a further 11 non-governmental experts in
virology, public health, pediatrics, medicine, epidemiology, immunology, and other relevant scientifc
felds. The Working Group’s deliberations were informed by discussions with government ofcials and
others on various aspects of the 2009-H1N1 pandemic.
2009-H1N1 in Historical Context
Based on the history of infuenza pandemics over the past hundred years, PCAST places the current
outbreak somewhere between the two extremes that have informed public opinion about infuenza. On
the one hand, the 2009-H1N1 virus does not thus far seem to show the virulence associated with the
devastating pandemic of 1918-19; moreover, medical science now has many potent tools at our disposal
to mitigate an infuenza pandemic in ways that were not possible ninety years ago. On the other hand,
the 2009-H1N1 virus is a serious threat to our nation and the world, unlike the “swine fu” episode in
1976 that led to the vaccination of over 40 million Americans in the absence of any spread of the virus
beyond an initial four cases at a single Army base.
viii viii ix
The Current Situation and a Plausible Scenario
Indeed, the 2009-H1N1 infuenza is already responsible for signifcant morbidity and mortality world-
wide — from its appearance in the spring, its continued circulation in the U.S. this summer, and its spread
through many countries in the Southern Hemisphere during their winter season. While the precise
impact of the fall resurgence of 2009-H1N1 infuenza is impossible to predict, a plausible scenario is
that the epidemic could:
• produce infection of 30–50% of the U.S. population this fall and winter, with symptoms
in approximately 20–40% of the population (60–120 million people), more than half of whom
would seek medical attention.
• lead to as many as 1.8 million U.S. hospital admissions during the epidemic, with up to
300,000 patients requiring care in intensive care units (ICUs). Importantly, these very ill patients
could occupy 50–100 percent of all ICU beds in afected regions of the country at the peak of
the epidemic and could place enormous stress on ICU units, which normally operate close to
capacity.
• cause between 30,000 and 90,000 deaths in the United States, concentrated among chil-
dren and young adults. In contrast, the 30,000–40,000 annual deaths typically associated with
seasonal fu in the United States occur mainly among people over 65. As a result, 2009-H1N1
would lead to many more years of life lost.
• pose especially high risks for individuals with certain pre-existing conditions, including
pregnant women and patients with neurological disorders or respiratory impairment, diabetes,
or severe obesity and possibly for certain populations, such as Native Americans.
There is an important issue with respect to timing:
• The fall resurgence may well occur as early as September, with the beginning of the school term,
and the peak infection may occur in mid-October.
• But signifcant availability of the 2009-H1N1 vaccine is currently projected to begin only in mid-
October, with several additional weeks required until vaccinated individuals develop protective
immunity.
This potential mismatch in timing could signifcantly diminish the usefulness of vaccination for mitigat-
ing the epidemic and could place many at risk of serious disease.
PCAST emphasizes that this is a planning scenario, not a prediction. But the scenario illustrates that an
H1N1 resurgence could cause serious disruption of social and medical capacities in our country in the
coming months. The circumstances underscore the importance of:
• ensuring that the nation’s complex and distributed healthcare systems are prepared to deal
with the potential surge in demand, especially with respect to critical care.
• ensuring that all feasible steps are taking to protect the most vulnerable populations.
viii viii ix
Preparations for the Pandemic: Observations and Recommendations
Preparation for the predicted fall resurgence has been constrained by time and materials: the virus
appeared in late spring and its resurgence is anticipated in early fall, while vaccine production currently
requires at least 6 months. On the other hand, the development of preparedness plans was greatly
stimulated by the recognition a few years ago of the threat posed by a highly lethal avian infuenza;
preparations developed for this potential threat facilitated the response to the current, quite diferent
strain of infuenza virus.
PCAST is impressed by the eforts underway across our government—including the breadth and depth
of thinking, energy being devoted, and awareness of potential pitfalls. The response is probably the
best efort ever mounted against a pandemic, refecting past preparedness eforts and the quality and
commitment of the people involved.
Still, PCAST found some aspects of the decision-making and preparation processes that we believe could
be improved, even in the short time remaining before the fall. These fndings and recommendations
are discussed at considerable length in its Working Group report.
Refecting the rapid pace of response in the Federal Government, some of the suggested actions are
already being considered, planned, or initiated by relevant agencies. In these cases, our recommenda-
tions are intended to provide support and additional focus to such eforts. Our recommendations fall
into seven major categories:
1. Coordination. We suggest that coordination of the decision-makers could be more efectively
orchestrated if a single person in the White House were assigned the responsibilities of clarifying
decision-making authorities and processes, ascertaining that all important issues are resolved
in a timely fashion, and reporting to you about actions to be taken.
2. Scenarios. We believe that preparations could be strengthened if the Federal Government
developed and disseminated a few specifc planning scenarios that Federal, state, local, and
private entities could use to assess their capacities and plans for medical and non-medical
interventions.
3. Surveillance. The ability to respond to the epidemic will depend on reliable and timely informa-
tion about its course at the national, regional, and local level. We believe there are opportunities
to make important upgrades to existing national surveillance systems in time for the expected
fall resurgence.
4. Response. There are four critical pillars of a mitigation efort: vaccines, anti-viral drugs, medical
care, and non-medical interventions that diminish virus spread. In particular, we focus on deci-
sions that could reduce instances of severe disease and death by accelerating the delivery and
use of vaccines; developing integrated plans to protect especially vulnerable populations; and
ensuring access to intensive care facilities.
5. Barriers. Some legal, social, and fnancial barriers exist that may reduce compliance with some
recommended measures for mitigation and we propose ways that the Federal Government and
others could work to overcome such barriers.
x x xi
6. Communication. Communication plans for relaying to the states, health workers, and the gen-
eral public the government’s recommended actions for mitigation are in some cases inadequate
and should be strengthened.
7. Future Preparedness. The current outbreak highlights gaps in our capacity to combat epidem-
ics caused by infuenza and other agents. We outline steps that can be taken in the next few
years, including improving vaccine production and design, anti-viral drug development, and
health surveillance systems.
Action Items
In the report, PCAST makes a number of recommendations about specifc aspects of the national prepa-
rations. Several are of special importance and warrant consideration for immediate or near-term action.
Specifcally, PCAST proposes that the President:
i. Designate a senior member of the White House staf, preferably the President’s Homeland
Security Advisor, to be responsible for coordination of all major decision-making about the
2009-H1N1 pandemic.
and that the relevant Federal agencies:
ii. Produce and disseminate several planning scenarios and work with Federal, state, local, and
private entities to anticipate potential ‘surge’ demand (especially for critical care, e.g., ICUs
and respirators) and develop logistical plans for such contingencies.
iii. Expand CDC’s existing surveillance systems to track information about infuenza-like illnesses
from an integrated network of sites, including data from population sampling, emergency
rooms, and hospitals, with emphasis on critical care units.
iv. Accelerate production of an initial quantity of fnished vaccine as early as mid-September,
to allow vaccination of up to 40 million people, with emphasis on the most vulnerable age and
disease groups, as soon as initial data are available on safety and immunogenicity. This decision
would need to be made almost immediately.
v. Develop focused plans to identify, reach, and protect members of the most vulnerable
groups and their health care providers in time to make use of the protective methods at the
nation’s disposal.
vi. Prepare a communication plan that would deliver appropriate and efective messages about
the range of available medical and non-medical interventions, including especially vaccination,
to the public in a timely fashion.
vii. Organize a multi-agency effort, under the direction of the National Security Council, to
improve the design and production of influenza vaccines, so that effective vaccination
programs can begin more promptly in the course of future epidemics caused by new strains
of infuenza virus.
x x xi
Caveats About the Report
The urgency of an ongoing pandemic, one that is likely to worsen in the next month or two, has com-
pelled PCAST and its Working Group to perform its tasks rapidly. Under these circumstances, some of
the information gathered by the Working Group for this report (such as the schedule for availability of
vaccines and clinical data on infected individuals) must be viewed as provisional and subject to change.
Given the complexity of the situation and the many activities underway to deal with it, PCAST recog-
nizes that the Working Group could not analyze the problem from every perspective and has doubt-
less failed to acknowledge all of the useful work that is already being done by members of the Obama
Administration. In particular, the report does not rigorously address the measures that might need to be
taken in the unlikely event that the pandemic proves to be much more severe than we currently envision.
Next Steps
PCAST hopes that its report and that of its Working Group help guide the urgent work that the
Administration has undertaken to mitigate the efects of the 2009-H1N1 pandemic. PCAST and its
Working Group are prepared to respond to additional questions that members of the Administration
might have in the coming months.
xiii
xiii
Te President’s Council of Advisors on
Science and Technology
2009-H1N1
Working Group Report
xv
xv
PCAST
2009–H1N1 Working Group
Members
Ann M. Arvin
Lucile Salter Packard Professor of Pediatrics and
Professor of Microbiology & Immunology
Vice Provost and Dean of Research
Stanford University
Emilio A. Emini
Executive Vice President
Vaccines Research and Development
Wyeth Pharmaceuticals
Harvey V. Fineberg
President
Institute of Medicine
Don Ganem
Investigator, Howard Hughes Medical Institute
Professor of Microbiology and Medicine
University of California San Francisco
Marcelle Layton
Assistant Commissioner
Communical Disease Program
New York City Department of Health
Marc Lipsitch
Professor of Epidemiology
Director, Center for Communicable
Disease Dynamics
Harvard School of Public Health
Arnold S. Monto
Professor of Epidemiology
University of Michigan School of Public Health
Peter Palese
Horace W. Goldsmith Professor
Chair, Department of Microbiology
Professor, Department of Medicine
Mount Sinai School of Medicine
Ed Penhoet
Director, Alta Partners
Chairman of the Board, Immune Design
Chairman of the Board, Metabolex
Rajeev Venkayya
Director, Global Health Delivery
Bill & Melinda Gates Foundation
Robert G. Webster
Rose Marie Thomas Chair in Virology
Department of Infectious Diseases
St. Jude Children’s Research Hospital
Richard J. Whitley
Distinguished Professor
Loeb Scholar
Professor of Pediatrics, Microbiology, Medicine
and Neurosurgery
University of Alabama at Birmigham
Staf
Deborah Stine
Executive Director, PCAST
Peter Emanuel
Assistant Director, Chemical & Biological
Countermeasures, OSTP
Co-Chairs
Eric Lander
President and Director
Broad Institute of Harvard and MIT
Harold Varmus
President
Memorial Sloan-Kettering Cancer Center
xvii
xvii
Table of Contents
I. Introduction and Charge .................................................................................................1
II. The U.S. Experience with Infuenza Over the Last Century .........................................7
Introduction ............................................................................................................................................... 7
1918-19 Infuenza Pandemic ................................................................................................................ 8
1976 Swine Flu “Fiasco” ........................................................................................................................... 8
Other Pandemics ...................................................................................................................................... 9
Avian Flu ....................................................................................................................................................10
Lessons for Fall 2009 ..............................................................................................................................11
III. Anticipating the Return of 2009-H1N1: Envisioning Scenarios .............................. 13
Introduction .............................................................................................................................................13
The Need for Concrete Scenarios for Response Planning .......................................................15
IV. Ensuring Adequate Data for Decision Making: Surveillance Systems ................... 21
Introduction .............................................................................................................................................21
Existing Data Streams ...........................................................................................................................22
Shortcomings of Current Data Streams .........................................................................................23
Recommendations .................................................................................................................................24
Conclusions ..............................................................................................................................................29
V. Responding to the Pandemic ..................................................................................... 31
Introduction .............................................................................................................................................31
Vaccines and Antiviral Drugs ..............................................................................................................34
Medical Response ..................................................................................................................................39
Non-medical Mitigation Measures ...................................................................................................41
International Considerations Presented by the Pandemic .....................................................42
An Improbable Scenario Requiring More Stringent Non-Medical Measures ...................44
xviii xviii 1
VI. Lowering Financial and Regulatory Barriers to Efective Response ...................... 47
Introduction .............................................................................................................................................47
Emergency Funding for Federal, State and Local Actions .......................................................48
Lowering Barriers to Hospital Care ...................................................................................................48
Non-medical Mitigation Activities ...................................................................................................50
VII. Improving Communications .................................................................................... 53
Introduction .............................................................................................................................................53
Communication with State and Local Health Departments ...................................................54
Communication with Health Care Providers ................................................................................55
Communication with the General Public ......................................................................................55
VIII. Planning for More Efective Future Strategies Against Infuenza ........................ 59
Accelerate Speed and Increase Yield and Efectiveness of Vaccine Production ..............60
Facilitate Development of Additional Antiviral Drugs ..............................................................61
Facilitate Development of Rapid Point-of-Care Diagnostics ..................................................62
Improve Medical Surveillance ............................................................................................................62
Enhance Animal Surveillance Measures.........................................................................................64
References ........................................................................................................................ 65
Acknowledgements ......................................................................................................... 67
xviii xviii 1
I. Introduction and Charge
On April 15, 2009, the frst case of infection with novel infuenza A (H1N1) virus (“swine fu,” hereafter
“2009-H1N1”) was confrmed in the United States. In March and April, Mexico had experienced an
outbreak of unexplained pneumonia, with hundreds of reported cases and 59 deaths in Mexico City
alone. It soon became clear that 2009-H1N1 was associated with the Mexican pneumonia outbreak and
that the virus was spreading within North America; it was soon detected in many other countries. On
April 29, the World Health Organization (WHO) raised its infuenza pandemic alert level to Phase 5, just
short of declaring that a global infuenza pandemic was underway. In those early days of the outbreak,
severe cases were the most readily counted because they were usually hospitalized. As of April 29, 8 of
148 individuals with confrmed 2009-H1N1 infection worldwide had died (5.4 percent), initially raising
CHAPTER SUMMARY
In April 2009, a novel in?uenza A/H1N1 virus (2009-H1N1) appeared in Mexico, causing pneumonias and
59 deaths in Mexico City alone. The virus soon spread to the United States and to other continents. Within
two months, the World Health Organization (WHO) declared that the viral outbreak met the criteria of a
level 6 pandemic. As of August 2009, the virus continues to spread in the United States and elsewhere.
Although initial concerns of an extremely high fatality rate have receded, the expected resurgence of
2009-H1N1 in the fall poses a serious health threat to the United States. Further, although most cases are
mild, serious complications arise in some individuals, especially those with underlying medical complica-
tions such as pregnant women and those with neurological conditions. Under some models, seriously
ill in?uenza patients could require 50 to 100 percent of intensive care unit (ICU) beds at the epidemic’s
peak, stressing the medical and public health systems to the point of overwhelming some hospitals,
and could cause from 30,000 to 90,000 deaths, concentrated among children and young adults.
Since the initial report of the outbreak, the Federal Government, through various departments, agen-
cies and o?ces, has been actively studying the course of events, responding to them, and planning for
a resurgence of the pandemic this fall.
Under the aegis of the President’s Council of Advisors on Science and Technology (PCAST), a
Working Group on 2009-H1N1 in?uenza was formed in response to the President’s request for an
expert external review of the epidemic and the nation’s response to an anticipated resurgence in
the fall of 2009. Overall, the Working Group was deeply impressed by the e?orts underway across the
Federal Government—including the breadth of issues being anticipated and addressed, the depth of
thinking, the overall level of energy being devoted, and the awareness of potential pitfalls.
The Working Group did identify some potential ways to strengthen the response, and it has provided
recommendations. In many cases, the relevant agencies are already aware of these opportunities and
are taking steps in these directions. The Working Group’s recommendations are intended to provide
support for and additional focus to such e?orts.
2 2
REPORT TO THE PRESI DENT ON U. S. PREPARATI ONS FOR 2009-H1N1 I NFLUENZA
3
the possibility that the virus was extremely virulent, comparable to or even worse than the viral strain
that caused the 1918-19 infuenza pandemic. But uncertainty about the number of unconfrmed cases—
especially infected individuals with mild or no symptoms—made it impossible to assess severity accu-
rately. In fact, subsequent data revealed that the case-fatality ratio was actually much lower—although
still a cause for serious public concern.
As more cases were confrmed around the United States in late April and early May, the Centers for
Disease Control and Prevention (CDC), in coordination with state and local public health departments,
increased surveillance eforts and issued interim guidance to control the virus’s spread. Intensifed sur-
veillance rapidly clarifed that many mild cases had been missed in the early phases of the epidemic,
easing concerns that the new virus was extremely virulent, but still leaving uncertain the overall spec-
trum of illness and incidence. Media coverage was intense. Advisories warned against travel to Mexico
and soon against travel to the United States. In regions of the United States with reported cases, some
schools were closed just days or weeks short of the end of the school year. By June 11, the virus had
spread to 74 countries and all continents but Antarctica, and WHO declared the outbreak an infuenza
pandemic (Phase 6) on the basis of its geographic spread. As summer began and schools adjourned,
travel advisories were rescinded and media and public attention waned.
Although infuenza usually becomes almost undetectable during the summer, transmission of 2009-
H1N1 virus continues in the United States (albeit at a lower level) and in other Northern Hemisphere
countries, notably the United Kingdom. While monitoring of clinical outcomes to date suggests that
most 2009-H1N1 infections are mild, there have been notable reports of people with severe illnesses,
many of them requiring intensive hospital care, and deaths, predominantly among relatively young
people. Certain groups—such as the First Nation people in rural Manitoba, Canada—appear to have
been particularly hard hit. And even mild outbreaks have in many cases been socially disruptive.
The Southern Hemisphere’s regular infuenza season is now underway, and 2009-H1N1 has spread
rapidly within Argentina, Australia, Chile, and New Zealand, appearing to eclipse infection with the
expected seasonal infuenza virus and stressing the medical and public health systems to the point of
overwhelming some hospitals and flling some intensive care units (ICUs) to capacity. For example, in
Australia, 11 percent of over 20,000 confrmed cases of 2009-H1N1 infuenza have been hospitalized.
And of the 410 cases now hospitalized, 110 are in ICUs.
As the infuenza season in the Northern Hemisphere approaches and schools reopen, the pandemic
is expected to accelerate, with the potential for signifcant health consequences in the United States,
Europe, and other regions. Based on past pandemics, this acceleration is likely to occur before the normal
(i.e., seasonal) infuenza season, starting in September and peaking in October. In a typical (non-pan-
demic) season, infuenza becomes prevalent in winter and causes an estimated 30,000 to 40,000 deaths
in the United States, with about 90 percent of those deaths occurring in patients ages 65 years or older.
A plausible scenario, given current data (and described in more detail in Chapter 3), is that 2009-H1N1
infuenza could place enormous stress on U.S. medical and public health systems, as well as on an
American economy already under stress. It could cause anywhere from 30,000 to 90,000 deaths in the
United States in fall 2009, mainly among younger adults and children (unlike the situation with seasonal
infuenza, which causes death mainly in the elderly) and those with certain pre-existing conditions.
2 23
I. I NTRODUCTI ON AND CHARGE
Moreover, as much as 50 to 100 percent of ICU capacity in the United States could be required solely
to treat 2009-H1N1 patients at the peak caseload, in hospital units that typically run at 80 percent of
capacity. Such stress on ICUs and emergency departments would cause severe disruption of hospital
function, necessitating marked curtailment of all but the most urgent admissions and surgeries.
These estimates assume that the clinical severity of infection with the 2009-H1N1 virus will be the
same this fall as it was in the spring. Even so, the estimates of serious disease and death could be of
by several-fold because the total number of infected persons to date—and proportion of severe infec-
tions—remain extremely uncertain. In addition, there is a possibility, difcult to quantify, that severity
could change, either up or down, as the virus evolves (see Box 1A). Various public health measures can
be taken to attempt to mitigate the pandemic. It is clear, however, that many of the decisions about
whether and when to employ these mitigation measures will have to be made rapidly, before many
uncertainties are resolved.
Since the outbreak began in late April 2009, the Federal Government—through various departments,
agencies, and ofces, especially the Department of Health and Human Services (DHHS), the Department
of Homeland Security (DHS), and components of the White House staf—has been actively studying
the course of events, responding to them, and planning for a resurgence of the pandemic this fall. As
a consequence of concerns since 2004 about the possibility of a pandemic involving the highly patho-
genic avian (H5N1) infuenza virus, the United States has been especially well positioned to organize a
response to the 2009-H1N1 pandemic. Preparedness activities have included:
• releasing antiviral drugs from the national stockpile;
• contracting with several pharmaceutical companies to develop and manufacture vaccines
against 2009-H1N1 as quickly as possible;
• removing restrictions on the use of unapproved medical treatments and tests under public
health emergency conditions;
• increasing surveillance at multiple levels (e.g., virus identifcation and characterization; data on
outpatients, hospitalized patients, and mortality);
• convening a summit of states, tribes, and territories to plan responses to the epidemic;
• overseeing congressional passage of an emergency funding measure (described in greater detail
below) for a variety of uses, including purchase of vaccines and drugs, support of non-Federal
public health initiatives, and additional needs at CDC and the Food and Drug Administration
(FDA);
• providing funds to state and local public health ofces and health care systems to step up their
preparedness eforts;
• undertaking public communication eforts; and
• issuing guidance for the general public, clinicians, laboratories, pregnant women, schools, and
communities.
4 4
REPORT TO THE PRESI DENT ON U. S. PREPARATI ONS FOR 2009-H1N1 I NFLUENZA
5
On June 24, 2009, President Obama signed into law the Supplemental Appropriations Act, 2009 (Public
Law 111-32). Within the Act, Congress appropriated $7.65 billion to DHHS to prepare for the 2009-H1N1
infuenza outbreak, including a $5.8 billion contingent appropriation. After spending an initial $1.85
billion on procurement of vaccines, expansion of surveillance activities, and preparation for a possible
immunization campaign, on July 16 the President designated an additional $1.825 billion as emergency
funds to support additional measures related to infuenza vaccination eforts, leaving $3.975 billion in
reserve as contingency funds.
In early July, President Obama asked his Council of Advisors on Science and Technology (PCAST) to
provide an expert external assessment of the epidemic and to ofer guidance about the nation’s plans
BOX 1A: THE 2009-H1N1 INFLUENZA VIRUS
In the few months since its ?rst isolation, the 2009-H1N1 in?uenza virus has been quickly subjected to
intense study of its molecular properties, illustrating the capacities of modern virology and genetics.
Like other influenza viruses, the genes of the 2009-H1N1 virus are arrayed on eight segments of
single-stranded RNA that, in the aggregate, constitute the viral genome. Genomes of these viruses are
inherently unstable, with frequent changes in each RNA segment accounting for genetic “drift,” and
reassortment of segments when cells are co-infected with two or more viruses, accounting for more
dramatic genetic “shift.” The 2009-H1N1 virus is a “triple reassortant,” as it contains RNA segments from
avian-, human-, and swine-origin viruses. The majority of RNA segments, including the segment cod-
ing for the hemagglutinin protein, come from swine-origin viruses. Hemagglutinin mediates immune
protection against in?uenza viruses, is notable for rapid changes in its composition, and forms the basis
for the annual reformulation of in?uenza virus vaccines. It is also one of the two major proteins on the
viral surface, hemagglutinin (H) and the neuraminidase (N), that determine the subtype classi?cation
of type A in?uenza viruses as ‘H1N1,’ ‘H3N2,’ etc.
Of all of the H1 subtype hemagglutinins in viruses isolated from humans in the 20th and 21st centuries,
the hemagglutinin of the 2009-H1N1 appears to be genetically most similar to those of the 1918-19
H1N1 pandemic virus and of the H1N1 virus of swine-origin that caused the limited human outbreak at
an army base in New Jersey in 1976. It is less closely related to the hemagglutin in other strains of H1N1
virus responsible for seasonal in?uenza in recent years.
The relatively low virulence of 2009-H1N1 virus may be attributed, in part, to the absence of a major
determinant of virus virulence—the expression of a protein called PB1-F2 that is known to cause cell
death and was found in viruses responsible for the major in?uenza pandemics of 1918-19 (H1N1), 1957
(H2N2), and 1968 (H3N2).
The 2009-H1N1 virus is atypical in some ways, including its transmissibility during warm seasons and its
apparent infection of the gastrointestinal tract in approximately one-third of serious cases. These and
other properties of the new virus will be subject to more intensive study and comparisons with earlier
isolates in the near future in order to understand its mode of pathogenesis, virulence, transmission rate,
and immunogenic properties.
4 45
I. I NTRODUCTI ON AND CHARGE
to respond to its likely resurgence in the fall. PCAST established a Working Group on 2009-H1N1, co-
chaired by Drs. Harold Varmus and Eric Lander, consisting of experts in the felds of virology, public
health, and medicine, with experience in the academic, governmental, philanthropic, and industrial
sectors.
PCAST’s charge was several-fold:
• to identify critical questions for which timely answers are needed by decision-makers;
• to survey and assess preparations currently underway in the Federal Government;
• to highlight major challenges and gaps; and
• to make specifc recommendations concerning additional opportunities to help mitigate a
serious 2009-H1N1 fu pandemic this fall.
The Working Group worked on an accelerated schedule during the month of July 2009 to respond
to its charge. It met July 16–17, 2009, in Washington, D.C., to hear presentations from Federal agency
leaders, epidemiologists, state and international public health ofcials, vaccine and drug developers,
and experts in social mitigation strategies, including public information and marketing. In addition,
interviews were conducted at other times with government ofcials and experts on various aspects of
the infuenza epidemic.
The Working Group’s goal was not to predict the severity of any next wave of the epidemic or to pre-
scribe specifc responses. Instead, the goal was to provide guidance to support and strengthen the many
eforts already underway to prepare the country for the expected resurgence of 2009-H1N1 in the fall.
To present its observations in a logical narrative, this report is organized in chapters focused on the
Nation’s prior experience with influenza; scenario planning; surveillance of the current epidemic;
decision-making about measures to mitigate the epidemic; lowering legal and economic barriers to
response; communications; and steps to strengthen the response to future epidemics. In addition to
providing specifc guidance to relevant agencies, the report aims to provide sufcient background to
be readable by members of the general public, who are understandably concerned about the current
outbreak and the Nation’s response.
MAIN CONCLUSION
Overall, the Working Group was deeply impressed by the e?orts underway across the Federal
Government—including the breadth of issues being anticipated and addressed, the depth of think-
ing, the overall level of energy being devoted, and the awareness of potential pitfalls. The response
is probably the best e?ort ever mounted against a pandemic, re?ecting both past preparedness
e?orts and the quality and commitment of the people involved.
The Working Group did identify some potential ways to strengthen the response. In many cases,
the relevant agencies are already aware of these opportunities and are taking steps to address
them, while recognizing that time is short and that some goals may not be achievable. The Working
Group’s recommendations are intended to provide support for and additional focus to such e?orts.
7
7
II. Te U.S. Experience with Infuenza Over
the Last Century
Introduction
Seasonal infuenza epidemics occur every winter, peaking between December and February, and are
estimated to cause 30,000 to 40,000 deaths in the United States alone, primarily in children under age
2 and adults over age 65, and more than 250,000 hospitalizations per year. The economic impact of
seasonal infuenza is estimated at $37 billion each year.
Since 1977, two infuenza A virus subtypes and one infuenza B subtype have circulated each winter.
Seasonal infuenza viruses undergo frequent mutations that can cause small changes in proteins nec-
essary for entry into human cells, allowing them a measure of protection against immune responses,
even in people who were infected with prior strains. (Infuenza viruses are classifed by these proteins,
called hemagglutinin [H] and neuraminidase [N]; see Box 1A in Chapter 1.) This genetic variability means
that people experience repeated infuenza infections over their lives and vaccine formulations must be
updated nearly every year.
At irregular intervals, new subtypes of infuenza burst on the scene and sweep through the human
population, which has no signifcant immunity to them. Such global pandemics appear to occur three
to four times per century. In the twentieth century, pandemics were caused by new variants of infuenza
CHAPTER SUMMARY
Seasonal in?uenza epidemics occur every winter and are estimated to cause some 30,000-40,000 deaths
in the United States alone, primarily in young children, the elderly, and others with underlying medical
conditions. Several times in the last century new subtypes of in?uenza have swept through the human
population—which has little or no immunity to them—and caused global pandemics.
Preparation for in?uenza pandemics is shaped in large part by the experiences of the pandemic of
1918-19, when 40-100 million people perished worldwide, and the swine ?u “?asco” of 1976, when 45
million Americans were vaccinated for a virus that never spread beyond a tiny cluster. In 2005, concerns
that the highly lethal avian H5N1 virus could precipitate an in?uenza pandemic led to signi?cant invest-
ments and improvements in Federal preparedness, although signi?cant transmission among humans
has fortunately not occurred to date. Based on available information, the in?uenza pandemics most
analogous to the current 2009-H1N1 outbreak may be those of 1957 and 1968, in which the death rates
were two- to four-fold higher than normal.
The main lessons from these experiences are that vigorous preparation and action can save lives, but
that it is critical to maintain situational awareness and ?exibility as a pandemic unfolds.
8 8
REPORT TO THE PRESI DENT ON U. S. PREPARATI ONS FOR 2009-H1N1 I NFLUENZA
9
A virus in 1918 (H1N1), 1957 (H2N2), and 1968 (H3N2). These pandemics varied in severity, for reasons
related both to the level of pre-existing immunity in the human population and to the genetic makeup
of the virus. In spite of extraordinary scientifc advances in understanding infuenza viruses, they remain
highly unpredictable.
Responses to new pandemics should be informed by historical experience. The severe pandemic of
1918–19 ofers some lessons about the benefts of rapid action, and the swine fu vaccination campaign
of 1976 is instructive about the risk of an overly aggressive response to an unproven threat. Over the past
fve years, the emergence of human cases of a highly pathogenic avian H5N1 infuenza has stimulated
unprecedented pandemic planning eforts.
1918–19 Infuenza Pandemic
The 1918–19 pandemic was the worst natural calamity of the twentieth century, with an estimated mor-
tality worldwide of 40–100 million lives. In the United States, between 500,000 and 750,000 perished at a
time when the U.S. population was one-third its current size. In contrast to seasonal infuenza, mortality
was especially high among previously healthy young adults. In cities that adopted early measures of
“social distancing,” such as cancelling public gatherings and closing schools, the epidemic appeared to
have spread more slowly and reached a lower peak incidence.
What is most informative about the 1918–19 pandemic for current planning purposes is its pattern
of spread. A frst, or spring, wave began in March 1918 and spread unevenly across the United States,
Europe, and Asia. Although illness rates were high, death rates in most locations were not signifcantly
above those of seasonal infuenza. The spring outbreak was mild enough that the public health and
medical communities saw no cause for alarm. However, a second, fall wave spread globally from
September to November 1918, with death rates approximately ten-fold higher than in the spring. Cities
that responded rapidly by closing schools, churches, and theaters, restricting public gatherings, and
otherwise discouraging social interaction appear to have reduced transmission and mortality while the
measures were in efect. However, most cities could not sustain these measures, and many experienced
the return of infuenza as control eforts lapsed. In some places, a third wave occurred in early 1919.
Death from pneumonia was a hallmark of the 1918–19 fall and winter waves. The 1918–19 pandemic
vividly illustrates what can happen when the public health and medical communities lack knowledge,
contingency plans, and efective vaccines or treatments.
1976 Swine Flu “Fiasco”
The events of 1976 serve as an example of a public health response premised only on the “worst case”
scenario, which ended up being a false alarm. In January 1976, a novel H1N1 virus frst appeared in a
group of army recruits at Fort Dix, New Jersey. Four were hospitalized and one died. In March, on the
advice of public health experts, President Gerald Ford announced on television that he was asking
Congress for $137 million “to inoculate every man, woman, and child in the United States” against swine
fu. Within 10 weeks of the launch of the fall vaccination campaign, about 45 million people, or 1 in 4
Americans, had received swine fu immunizations. Public confdence, however, was soon shaken by the
deaths of three elderly adults in Pittsburgh soon after they received their swine fu shots. Although such
8 89
I I. THE U. S. EXPERI ENCE WI TH I NFLUENZA OVER THE LAST CENTURY
events are expected by chance, local public health ofcials and the media raised the possibility that
the deaths were due to the immunizations. Later reports found Guillain-Barré syndrome, a paralyzing
neuromuscular disorder, to be associated with 1976 vaccination at a frequency of approximately 1 per
100,000 vaccinations. With no disease from the swine fu virus having appeared since the outbreak at
Fort Dix, even this relatively rare complication was enough to lead to the suspension of the immuniza-
tion program.
The key policy error in 1976 was to bundle all decisions (e.g., make the vaccine, immunize everyone,
make a Presidential announcement) into a single “go” or “no-go” decision, with no provision for the
monitoring of the situation and continual reconsideration of policy directions based on new evidence.
The experience of 1976 highlights the challenge of coordination horizontally across diferent agencies
of the Federal Government; vertically across the various levels of government (Federal, state, local);
among public ofcials and health professions and institutions; and between the public and private sec-
tors. The 1976 swine fu immunization program highlighted other lessons, including the importance of
communication to the public, the long-term need to preserve credibility, and the need for preparations
relating to vaccine liability insurance anticipation of coincident deaths in a mass immunization program,
the potential impact of vaccine side efects, and the role of chance.
In applying these lessons to present circumstances, it is worth noting a number of crucial diferences
between then and now. Among them: (1) the current 2009-H1N1 is continuing to spread, unlike the
single, self-quenching outbreak at Fort Dix; (2) a wider array of interventions, including antiviral medica-
tions, is available; (3) more sophisticated characterization and surveillance systems for circulating viral
strains are in place; (4) the Federal Government has a more complex structure and a larger number of
relevant agencies and ofcials; (5) the media are vastly more varied and operate on a continuous news
cycle; and (6) widespread international travel contributes to accelerated transmission around the world.
Other Pandemics
The two other infuenza pandemics in the last century also provide insight into the current situation.
The so-called “Asian Flu” of 1957 appeared in the United States in late spring. Small outbreaks occurred
over the summer, but transmission accelerated in the late summer through early fall, peaking in October
before vaccine supplies were widely available. Public health authorities learned an important lesson
about the potential value of early protection against infuenza. After a lull following the October peak,
there was a smaller upsurge in transmission in early 1958, in which the elderly were disproportionately
afected. Mortality in 1957–58 was high—an estimated 70,000 deaths in a population of about 170
million. Although death rates were highest among the elderly, about 30 percent of all deaths occurred
in those under age 65.
The mildest of the twentieth century pandemics occurred in 1968, with an estimated 34,000 deaths in
a population roughly two-thirds of today’s; death rates were highest in the elderly, but about half of all
deaths occurred in people under age 65. The 1968 virus emerged frst in Hong Kong in mid-1968 and
appeared in the United States in September, but did not peak until December 1968/January 1969. One
reason for the slower spread and reduced death toll during the 1968 pandemic may be that the virus
(H3N2) shared some similarities with the virus that was already circulating (H2N2), so the population
may have been partially immune.
10 10
REPORT TO THE PRESI DENT ON U. S. PREPARATI ONS FOR 2009-H1N1 I NFLUENZA
11
In the decade following each of the twentieth-century pandemics, seasonal epidemics continued and
excess deaths in younger age groups remained elevated above normal seasonal levels. These recent
pandemics illustrate that the timing of peak pandemic activity may be earlier than that of normal fu
season, but unpredictable in that younger age groups sufer more during pandemics than during sea-
sonal infuenza outbreaks, and that the impact of new strains on these younger groups persists into
subsequent seasons.
Avian Flu
In Hong Kong in 1997, a highly pathogenic avian H5N1 virus was found to have infected large numbers
of poultry and a small number of humans. Following initial control by extensive slaughter of poultry
focks, the virus disappeared, only to reappear in 2003–2004. The virus was felt to be a potential pan-
demic threat because, although the rate of bird-to-human transmission was low and person-to-person
spread was rare, the mortality rate was over 60 percent.
The possibility that H5N1 could acquire the ability to transmit efciently between humans and thereby
start a new and severe pandemic spurred major pandemic-planning eforts at the state, Federal, and
global levels. Beginning in 2005, the Federal Government undertook a number of initiatives to address
this threat, including: (1) developing a “National Strategy for Pandemic Infuenza” to guide the pre-
paredness eforts of Federal departments and agencies, state and local authorities, businesses, and
the public; (2) requesting that Congress appropriate $7.1 billion to establish a domestic stockpile of
antiviral medications and pre-pandemic vaccine and to signifcantly expand domestic infuenza vac-
cine production capacity; (3) developing guidance on pandemic infuenza preparedness for the public
and a broad spectrum of stakeholders outside of the Federal Government; (4) establishing policies to
guide the pandemic response in areas such as border management and prioritizing allocation of pre-
pandemic vaccine; and (5) creating the International Partnership on Avian and Pandemic Infuenza to
facilitate global surveillance and preparedness actions.
These and other eforts in response to the H5N1 threat have informed and guided many of the actions
undertaken in response to the 2009-H1N1 outbreak to date.
10 10 11
I I. THE U. S. EXPERI ENCE WI TH I NFLUENZA OVER THE LAST CENTURY
Lessons for Fall 2009
Given the concern about avian infuenza and awareness of the catastrophic results of the 1918–19 pan-
demic, much of the efort for pandemic planning has been directed toward responding to an extremely
severe pandemic. This worst-case-scenario planning has led to improvements in the efciency of vaccine
production and testing, stockpiling of antiviral drugs, and other measures that will be valuable in the
fall, if used appropriately. However, unless the severity of the 2009-H1N1 infuenza increases markedly,
it is unlikely that community mitigation on the scale envisioned for a more severe pandemic will be
required. On the other hand, as described in the next chapter, it is already clear that the current pandemic
is no false alarm (as in 1976) and has the potential to cause serious health consequences, especially in
relatively young age groups and in individuals with certain pre-existing medical conditions.
While the features of 2009-H1N1’s next wave cannot be accurately predicted, history teaches us that
the most efective responses will be achieved by advanced planning, knowledgeable judgments about
the range of possible events, continued situational awareness about the pandemic, and fexibility in
thinking and decision making.
13
13
III. Anticipating the Return of 2009-H1N1:
Envisioning Scenarios
Introduction
Because the course of the 2009-H1N1 pandemic cannot be accurately predicted, it is important to have
a clear picture of our current knowledge and to envision a range of specifc scenarios against which to
test our planning and capabilities. While changes in the virus remain possible, the current picture of
2009-H1N1 is as follows:
CHAPTER SUMMARY
While the course of the 2009-H1N1 pandemic cannot be accurately predicted, it is important to have a
clear picture of our current knowledge and to envisage a range of speci?c scenarios against which to
make plans and assess our capabilities.
Our current knowledge is that the virus is readily transmissible, especially to younger age groups, and
causes severe clinical manifestations in a small but signi?cant proportion of cases, with most of the
severe cases in people under age 65. The proportion of in?uenza cases that ends in death appears similar
to that for seasonal in?uenza (perhaps 1 per 1,000 patients seeking medical attention), but the absolute
number of deaths is expected to be at least as high, if not substantially higher, than for seasonal ?u
because a higher proportion of the population is likely to become infected (perhaps 40 to 60 percent
for pandemic ?u versus perhaps 5 to 20 percent for seasonal ?u). Moreover, the distribution of deaths is
likely to cause a greater loss of expected years of life because the virus predominantly a?ects younger
people. Some speci?c individuals appear to be at much higher risk, including patients with neurologi-
cal disorders, pregnant women, and patients with asthma. Certain ethnic groups also may be at higher
risk, such as Native Americans. Notwithstanding these observations, there remains great uncertainty
about the likely course of the pandemic.
The Working Group believes that planning activities would be aided by development of a small number
of speci?c, shared scenarios describing the possible evolution of the pandemic.
We believe it would be valuable for DHHS to develop a limited number of speci?c scenarios for dis-
semination to Federal, state, local and private decision-makers, to be used for assessing capabilities
and planning responses.
For planning purposes, we describe a plausible scenario in which the pandemic causes between
30,000 and 90,000 deaths and requires at its peak 50 to 100 percent of ICU beds in a?ected regions of
the country, placing extreme stress on a system in which 80 percent of ICU beds are already otherwise
occupied. Analysis of this scenario and alternative scenarios should facilitate decision making about the
use of mitigation methods in response to new information about the epidemic.
14 14
REPORT TO THE PRESI DENT ON U. S. PREPARATI ONS FOR 2009-H1N1 I NFLUENZA
15
• The virus is transmitted readily between people at a rate comparable to that estimated for previ-
ous pandemic strains. In most places where surveillance is available, there is clear evidence of
ongoing transmission even through the summer.
• Confrmed cases are concentrated in younger age groups, up to age 24. According to CDC, infection
risk in the 0 to 24 age group is 4 to 5 times greater than for those in the 25 to 49 age group, and
20 times greater than those over age 65.
• Almost all severe cases are in people younger than age 65. To date, 83 percent of deaths and 71 per-
cent of hospitalizations from 2009-H1N1 in the United States have been in people between the
ages of 5 and 64. This is in stark contrast to seasonal infuenza, in which two-thirds of hospitaliza-
tions and almost 90 percent of deaths occur in persons 65 or older. This means that the years
of anticipated life lost per death are much greater than is usual as a result of seasonal infuenza.
• The case-fatality ratio (i.e., proportion of infected individuals who die as a result of the infection)
appears to be similar to seasonal infuenza—possibly on the order of 0.1 to 0.3 percent of medically
attended cases (i.e., those infections requiring hospitalization or primary care), and perhaps 0.05
to 0.2 percent of all symptomatic cases, whether or not medical care is sought. However, these
numbers are highly uncertain, in particular because the number of medically attended cases
is not well measured and the number of mild cases that do not come to medical attention is
essentially unknown.
• Despite a similar case-fatality ratio as for seasonal infuenza, the number of deaths from 2009-H1N1
is likely to be substantially higher and the deaths and severe illness in the population will likely be
concentrated among much younger people than is the case for seasonal infuenza. Because most
of the population lacks signifcant immunity to a new pandemic strain, the proportion of people
infected in a pandemic is usually substantially higher than for seasonal fu (50 to 70 percent
for pandemic fu versus perhaps 5 to 20 percent for seasonal fu). Second, as noted above, the
consequences of infection in this epidemic are already known to be far more severe for children
and young adults, and seemingly milder for people over age 65 (with deaths mainly among
children and young adults, compared to seasonal infuenza).
• Individuals with certain underlying medical conditions—including those with neurological disorders
and pregnant women—appear to be at substantially elevated risk of severe outcomes. According to
CDC, as many as one-third of fatal cases and one-ffth of hospitalizations have been in persons
with neurological (e.g., neurocognitive, neuromuscular, seizure) disorders. Pregnant women
accounted for 8 percent of deaths and 6 percent of hospitalizations, although they make up
about 1 percent of the population. Asthma, diabetes, immunodefciencies, chronic obstructive
pulmonary disease (COPD), and other chronic conditions appear to be associated with severe
outcomes as well.
• Certain populations appear to be at elevated risk of severe outcomes, including Native American
groups. American Indians and Alaska natives historically are at high risk for severe respiratory
infections; while it is unclear what toll they have sufered from 2009-H1N1, a cluster of severe
2009-H1N1 disease among First Nation people in remote Manitoba, Canada, suggests that
14 14 15
I I I. ANTI CI PATI NG THE RETURN OF 2009-H1N1: ENVISI ONI NG SCENARI OS
these groups may be at high risk. Cases of 2009-H1N1 virus infection in these clusters have had
rapidly progressive, difuse, lower airway disease (compared to seasonal infuenza, which more
commonly involves the upper airway), resulting in development of acute respiratory distress
syndrome (ARDS) and prolonged ICU admission.
The Need for Concrete Scenarios for Response Planning
The Working Group is concerned that uncertainty about the course of the 2009-H1N1 pandemic may
be hampering planning. While uncertainty is inherent in pandemics, planning activities may be aided
by development of a limited number of specifc, shared scenarios that describe the possible evolution
of the pandemic. Dissemination of a limited number of plausible scenarios would provide a framework
against which decision-makers at the Federal, state, and local levels could test current capabilities and
also structure specifc plans and decision points. In the absence of such frameworks, decision-makers
may fail to adequately assess capabilities relative to potential needs. They also may fail to foresee key
decision points and be forced into hasty decisions in the “heat of battle.” A scenario-based approach
already has been embraced by the United Kingdom, which has defned and made public its planning
assumptions for a “reasonable worst case” scenario.
To illustrate this approach, we describe in Box 3A a scenario that we consider to be a reasonable model
for planning, followed by sample decision points that might be appropriate. We also suggest indicators
and triggers to redirect decision making should an unanticipated event emerge within the scenario.
The assumed characteristics of the model scenario are described in Table 3-1.
MAIN RECOMMENDATION (CHAPTER 3)
We recommend that DHHS rapidly develop a limited number of speci?c scenarios and disseminate
them to Federal, state, local and private decision-makers for planning purposes. Components of
these scenarios ideally would include:
i. timing and magnitude of the fall epidemic;
ii. peak burden on primary care providers, emergency rooms, hospital admissions, and ICUs;
iii. number of doses and timing of vaccine availability;
iv. dosing requirements and e?cacy of vaccine; and
v. e?cacy and supply of antiviral drugs and medical materiel.
These scenarios would allow Federal, state, local and private entities to assess their capacity and
develop plans for deployment and targeting of medical and non-medical interventions under the
various scenarios.
In addition, it would be valuable for DHHS to de?ne trigger points related to changes in circum-
stances (e.g., change in severity) to facilitate timely action, as well as the data and data streams
that will be required to activate these trigger points.
16 16 17
BOX 3A: A MODEL SCENARIO: A POSSIBILITY, NOT A PREDICTION
One plausible scenario is that there will be resurgence in transmission of 2009-H1N1 this fall that is comparable to that
seen in spring-summer 2009 but with higher rates of transmission due to the resumption of school and the cooler,
drier weather. Following a relatively steady or declining burden of cases in August, the number of new cases will
begin to rise exponentially in the ?rst week of September, growing 10-fold about every 10 to12 days. Hypothetically,
the peak incidence of infection nationally will occur around October 15, with minor variations across the country such
that peak incidence almost everywhere will occur during the month of October. At this peak, perhaps 1 to 2 percent
of the population will become infected each day.
Predicting demand on the health care system during this peak is fraught with uncertainties, but the following numbers
from one possible scenario are illustrative. During the peak, 1 or 2 out of every 2,000 Americans might be hospital-
ized. Cases requiring mechanical ventilation or intensive care could reach 10 to 25 per 100,000 population, requiring
50 to 100 percent or more of the total ICU capacity available in the United States and placing great stress on a system
that normally operates at 80 percent of capacity. Because adult ICUs are not prepared to care for pediatric patients,
there could be a particular shortage of facilities for sick children. In particular locations, the stress on the health care
system could grow even more acute, as large outbreaks occur in prisons, schools, and isolated communities with
limited health care access, such as Native American reservations. As awareness of the pandemic spreads, pressure on
emergency departments could mount, with long lines and a need for triage of mild cases and non-in?uenza cases.
Alongside these health-related burdens, substantial absenteeism from work and school could occur, as sick children
stay home, schools with large outbreaks close, and parents are forced to stay home either because of their own ill-
ness or to take care of sick children. Key members of the social infrastructure, such as police o?cers and ?re?ghters,
are increasingly home ill. Exposure of healthcare workers to sick patients is continual and antiviral supplies prove
inadequate for ongoing prophylaxis of these workers. Retail pharmacies run out of antiviral supplies in late September
or earlier, and states face the demand to replenish these supplies from state stockpiles and state Strategic National
Stockpile allocations; however, many states lack the ability to move antiviral drugs into the retail supply chain and
focus on delivery to hospitals. Hospitals face competing pressures to dispense antiviral drugs for prophylaxis of their
workers, to provide them to patients appearing in the emergency room, or to save them for the sickest admitted
patients. Debates intensify about the value of antiviral use for long-term prophylaxis or early treatment for mild
infection in high-risk groups such as pregnant women and immunocompromised patients, treatment of severely ill
patients, and prophylaxis of essential healthcare workers.
In this model scenario, around October 15, as the epidemic peaks, a major supply of 2009-H1N1 in?uenza vaccine
becomes available. Immunization starts within days, with considerable geographical variation in the rate at which
administration occurs. Immunization of priority groups is completed by early or mid-November, resulting in immunity
in vaccinated adults by mid-late November, as the epidemic wanes in most populations. Children require two doses
and do not acquire immunity until December, when new infections will have become rare.
By the end of 2009, 60 to 120 million Americans would have experienced symptomatic infection with 2009-H1N1;
nearly 1 to 2 million would have been hospitalized, with about 150,000-300,000 cared for in ICUs; and somewhere
between 30,000 and 90,000 people would have died, the majority of them under 50 years of age.
We emphasize that this is a plausible scenario, not a prediction. By way of comparison, it is less severe by a factor of
three (in terms of expected deaths per capita) than the “reasonable worst case” planning assumptions, publicized
by the UK government, for the H1N1 resurgence in that country.
16 16 17
TABLE 3-1: A POSSIBLE (NOT PREDICTIVE) SCENARIO TO HELP PLAN FOR
THE FALL RESURGENCE OF 2009-H1N1 INFLUENZA IN THE UNITED STATES
Peak incidence date (unmitigated) October 15
Peak incidence of symptomatic disease
1–2% of U.S. population (3–6 million people)
on the U.S. epidemic’s single peak day
Percent of U.S. population (and approximate numbers) assuming no change in virus
Infected (indicated by seroconversions,
with or without symptoms)
30–50% (90–150 million)
Symptomatic 20–40% (60–120 million)
Needing medical attention 15–30% (45–90 million)
Needing hospital care 0.3–0.6% (0.9–1.8 million)
Needing Intensive Care Unit (ICU) facilities 0.05–0.1% (150,000–300,000)
Deaths 0.01–0.03% (30,000–90,000)
Peak occupancy of ICU beds due to
2009-H1N1
10–25 ICU beds/100,000 population
1
Peak occupany of hospital beds due to
2009-H1N1
50–150 hospital beds/100,000 population
2
High-risk groups for death or hospitalization
Pregnant women; children (0–4 years old);
patients with neuromuscular/neurocognitive
disorders, asthma, chronic obstructive pulmo-
nary disease, cardiovascular disease, diabetes,
severe obesity, or immunocompromising
conditions
3
Notes:
1
The United States has 20 ICU beds/100,000 population. The number of ICU beds available for pediatric patients is especially limited.
2
The United States has 211 hospital beds/100,000 population.
3
Cetron M, 2009 Pandemic Novel Infuenza A (H1N1): Community Mitigation, powerpoint presentation to PCAST H1N1 Working Group,
July 16, 2009.
18 18
REPORT TO THE PRESI DENT ON U. S. PREPARATI ONS FOR 2009-H1N1 I NFLUENZA
19
Beyond this scenario, alternative scenarios are needed to take into account the possibility that major
assumptions are incorrect. In particular, four variations are of notable importance:
1. A milder scenario in which the number of deaths and severe cases is much lower than outlined
here, perhaps because many mild cases or infections without symptoms were missed in the
spring, leading to an overestimate of the severity.
2. A modifed scenario in which a large fraction (e.g., one-third) of 2009-H1N1 cases are resistant
to oseltamivir (Tamifu) by the peak of the epidemic, reducing the efectiveness of an important
method for mitigating the epidemic.
3. A more severe scenario, in which changes in the virus result in elevated rates of hospitaliza-
tion, intensive care demand, and death. In this case, the focus of severe disease may shift more
toward the general population, making focused attention on groups that showed high-risk in
the spring less of a priority.
4. A delayed scenario in which transmission does not increase dramatically in the early autumn, so
that vaccine availability precedes the peak of the epidemic, reducing the number of subsequent
cases by conferring protection through immunization.
We emphasize again that the baseline scenario and the alternatives above are given as examples for
planning purposes; they are not predictions of what will happen. DHHS should exercise its own expert
judgment in defning the most relevant scenarios, with the caveat that scenarios other than the most
likely also should be considered. In addition, planning should include at least one scenario in which the
peak of the epidemic precedes the availability of signifcant vaccine supplies.
To illustrate the value of scenario-based analysis, it is useful to consider issues in vaccine allocation, since
the timing of availability of signifcant quantities of vaccine is still uncertain.
• In the model scenario, we assume that vaccine administration will commence around the peak
of the pandemic, with substantial population-level immunity occurring only 2 to 8 weeks after
the peak. In this case, vaccination will have limited value in reducing transmission. There may be
a strong rationale for vaccinating certain high-risk groups as rapidly as possible, by accelerating
the availability of at least some vaccine.
• If transmission is substantially delayed compared to the model scenario, vaccination of children
may be of high value epidemiologically: it may be possible to immunize many before exposure,
protecting them and decreasing spread.
• Conversely, if an increase in severity is detected with the expected rate of transmission, broader
administration of vaccine before complete clinical trial data are available may be appropriate,
and the use of adjuvant (as discussed in Chapter 5) might ofer an improved risk-beneft profle.
18 18 19
I I I. ANTI CI PATI NG THE RETURN OF 2009-H1N1: ENVISI ONI NG SCENARI OS
In addition to analyzing specifc scenarios in advance, it will be important to defne indicators that could
trigger the need to make changes in plans, and to incorporate these indicators into scenarios. We believe
that it would be valuable for DHHS to defne specifc triggers in advance to the extent possible, since
this will allow orderly decision making when unexpected events arise. (It is worth noting that beyond
these triggers, public pressure in response to events, such as a cluster of child deaths, may force certain
communities to change their strategies.) Examples of potential triggers are shown in Box 3B.
BOX 3B: EXAMPLES OF INDICATORS THAT MIGHT SERVE AS TRIGGERS
FOR ACTION
Indicators of unacceptable burdens on health care might trigger guidance to intensify community
mitigation to spread out the peak burden.
• observations of intense burdens on health care providers, particularly emergency department vis-
its and ICU admissions, in developed countries in the Southern Hemisphere (during our summer);
• observations of intense burdens on emergency departments and ICUs in leading areas of the
Northern Hemisphere in autumn;
• early evidence of intense burdens on health care providers without evidence that the infection
is peaking, including more healthy adults or children among severe cases.
Indicators of substantially increased severity that might justify changes in plans for antiviral use,
vaccine formulation (adjuvant use), or community mitigation.
• observations of novel symptomatology in the Southern Hemisphere or in isolated Northern
Hemisphere groups during summer, especially if combined with evidence of viral changes asso-
ciated with this symptomatology;
• increased ratios of ICU admissions to overall hospitalizations for in?uenza-like illnesses (ILI) (prob-
ably not observable unless very large changes occur);
• early evidence of intense burdens on health care providers without evidence that the infection is
peaking; changes in risk groups to include more healthy adults or children among severe cases.
In addition, concentrations of unusually severe cases could occur in a population subgroup de?ned by
geography/ethnicity (e.g., a remote Native American population), by underlying medical condition (e.g.,
pregnancy or a novel risk factor), or by place of residence (e.g., nursing home, prison). In such cases it will
be urgent to provide adequate treatment for a?ected persons, consider accelerating vaccine delivery
to similar groups, and ascertain reasons for this increased severity, distinguishing viral changes from
infectious cofactors, host factors, or other reasons.
21
21
IV. Ensuring Adequate Data for Decision
Making: Surveillance Systems
Introduction
Decisions about how to respond to the fall resurgence of 2009-H1N1 will have to be made quickly in
response to rapidly evolving information about the epidemic. The quality of decision making in response
to the 2009-H1N1 pandemic will depend on accurate and timely data to answer six key sets of questions:
1. Approximately, how many people are becoming infected, experiencing illness, seeking medical care,
being hospitalized, requiring intensive care, and dying from 2009-H1N1? These data allow esti-
mates of severity, which help determine the intensity of response that is justifed. A subsidiary
but important challenge is to estimate the same numbers for seasonal strains of infuenza that
may be circulating over the same period.
2. How are these numbers changing over time? Are they increasing or decreasing, and how quickly?
3. Who is becoming infected and who is at greatest risk of severe outcomes (i.e., hospitalization, ICU
admission, death)? Specifcally, what are the ages, underlying conditions, and other risk factors
for infection and severe outcome?
CHAPTER SUMMARY
Decisions about how to respond to the fall resurgence of 2009-H1N1 will have to be made quickly
in response to rapidly evolving information about the epidemic. The quality of decision-making will
depend on reliable and timely estimates of the number of people and speci?c subgroups that are
infected, ill, seeking medical care, being hospitalized, requiring intensive care, and dying from 2009-
H1N1; changes in the virus; stresses on health systems; and e?ectiveness of various medical and public
health interventions.
CDC, in close coordination with local and state public health departments, supports a number of impor-
tant systems for surveillance of in?uenza activity. These systems have provided valuable data through
the spring and summer, but they have shortcomings that will limit their ability to provide the data
needed to make informed decisions. While it is not possible to remedy all of these limitations before
Fall 2009, there are a number of short-term steps that could be taken to signi?cantly improve the data
available for decision making.
The Working Group believes there is an important opportunity to upgrade national surveillance systems
in time for Fall 2009 by knitting together and extending existing systems. We are aware that CDC is
developing plans along these lines and strongly support these e?orts.
22 22
REPORT TO THE PRESI DENT ON U. S. PREPARATI ONS FOR 2009-H1N1 I NFLUENZA
23
4. How is the virus changing? Most important, are there changes in illness severity, antigenic char-
acter (which could compromise immunity acquired from natural infection or a vaccine), or drug
resistance of the circulating virus?
5. Are the medical and public health systems able to respond adequately? Is there adequate capacity
in physician ofces, emergency rooms, hospitals, ICUs, morgues, points of dispensing (PODs),
and other public health venues set up for the pandemic?
6. How well do medical and public health responses work? Does the vaccine protect against infec-
tion or severe outcome? Is the vaccination strategy (e.g., mass vaccination clinics) able to target
efectively the recommended population groups? Does antiviral treatment reduce severity? Do
social mitigation measures reduce transmission?
Federal decision-makers need data that answer these questions to inform policies and recommenda-
tions about the priority groups for vaccination and treatment, to calibrate the intensity of social mitiga-
tion interventions, and to provide guidance to clinicians about appropriate treatment and prevention.
State and local decision-makers need the data for the same reasons, but they also need to understand
the situation in their communities, which may difer from the national average. Clinicians need data
especially related to questions 3 and 5 in order to target scarce treatment to the appropriate patients,
improve clinical treatment, and implement surge capacity plans in the event of increased demands on
the health care system. The general public needs to understand the size and severity of the epidemic and
be motivated to comply with social mitigation measures. Historically, compliance improves when the
epidemic is perceived to be severe. All of these data are needed as close to instantaneously as possible.
Existing Data Streams
CDC, in close coordination with local and state public health departments, supports a large number of
systems for surveillance of infuenza activity. The output of many of these systems is summarized publicly
on FluView www.cdc.gov/fu/weekly/, and includes measures (some more nationally representative than
others) of outpatient consultation for infuenza-like illnesses (ILI), hospitalization for infuenza, pediatric
deaths from infuenza, population-wide deaths from pneumonia and infuenza, and virus characteristics
(subtype and drug resistance). Federal decision-makers have relied on these systems as the main source
of data on trends in case numbers, age distribution, and virus characteristics.
A second key source of data on the epidemic in the early days of the spring wave of 2009-H1N1 was
the relatively detailed reports from state and local health departments describing individual confrmed
cases, noting (with varying completeness) key variables such as age, underlying conditions, and outcome
(i.e., recovery, hospitalization, ICU, death). By early May, this level of reporting had become unsustainable;
most jurisdictions stopped testing most mild cases for 2009-H1N1 virus and ceased detailed reporting
of individual cases. Local authorities in many communities continued gathering data on the most severe
cases, but these data were not systematically reported to CDC. Thus the clinical picture of confrmed
infection at the national level is relatively static, based on the frst case reports in the epidemic, and it
has not been possible to track the evolution of the epidemic in the United States.
22 22 23
IV. ENSURI NG ADEQUATE DATA FOR DECISI ON MAKI NG: SURVEI LLANCE SYSTEMS
Shortcomings of Current Data Streams
While the data collected about 2009-H1N1 thus far have been extremely valuable, they have a number
of limitations. The key shortcomings of existing data streams are:
• Some key data are not updated continuously. Since individual-level case reporting ended in
early May, there has been no systematic way to update national data on high-risk groups (i.e.,
according to age and predisposing conditions) for confrmed infection and severe outcome at
the national level. Some of these data exist locally but are not being aggregated into a national
picture now that reporting to CDC is not at the individual level. Up-to-date information on
these variables is needed, for example, to inform decisions on who should receive priority for
vaccination and antiviral treatment.
• Current systems are geographically limited. Infuenza activity is geographically heteroge-
neous, as was apparent in the spring wave of 2009-H1N1 and as is known for seasonal infuenza.
Responses, therefore, should vary locally, but they can do so only with local information. For
national decision-makers, geographic coverage is important to ensure a nationally represen-
tative picture of the epidemic. Many of the most detailed data feeds, such as the infuenza-
confrmed cases at hospitalization monitoring sites funded by CDC through the Emerging
Infections Program (EIP), are geographically limited. By chance, during the spring none of these
EIP sites was in an area with a heavy burden of 2009-H1N1 disease.
• Current systems do not provide reliable estimates of infuenza morbidity and mortal-
ity. For many purposes it is critical to know, for example, approximately how many people are
infected or hospitalized, measured as total numbers of people or numbers per 100,000 popula-
tion. Most of these systems do not answer that question, but instead measure what proportion
of visits to health care providers or emergency departments are for ILI, and what proportion of
ILI cases that undergo viral testing are positive for 2009-H1N1.
• No systematic approach yet exists to monitor the capacity of the health care system to
respond. Although many jurisdictions monitor emergency department volume, national inte-
gration of these data is geographically spotty. For total burden of hospitalizations and intensive
care admissions due to infuenza, few if any representative data are available. Such a system,
called “HAvbed,” is planned by DHHS but has not yet been implemented.
• Laboratory capacity to confrm diagnosis and isolate viruses for further characterization is
limited. Most public health laboratories now restrict virus testing to patients with severe disease
and many laboratories will be unable to maintain even this practice if the number of cases grows
much higher in the fall. Commercial testing for pandemic 2009-H1N1 and other viral respiratory
pathogens is not widely available or widely used, so 2009-H1N1 infection in most patients may
not be confrmed in fall 2009; as a result, diagnosis will be based empirically on clinical symptoms
and knowledge of which respiratory viruses are circulating in each community.
• Current systems cannot monitor the burden of mild illness that does not come to medical
attention. Reliable estimates of this burden are needed to understand the severity of illness—
24 24
REPORT TO THE PRESI DENT ON U. S. PREPARATI ONS FOR 2009-H1N1 I NFLUENZA
25
the more people are becoming infected without coming to medical attention, the smaller we
expect the overall burden of morbidity, mortality, and health care system stress to be for a given
prevalence of infection. At present we do not know this number.
• Current systems for reporting and analyzing adverse events associated with vaccination
may not be well suited to challenges likely to arise during a vaccination campaign for
2009-H1N1. The Working Group has identifed two concerns in this area. First, adverse event
surveillance and analysis depends to a large degree on the ability to link vaccination to pos-
sible adverse events via medical records, but the administration of vaccine in settings other
than traditional medical care may circumvent this linkage. Second, high-risk groups that are
prioritized for vaccination also are likely to experience adverse health events at high rates.
Existing systems may not be able to rigorously evaluate elevated rates of such common events
in high-risk groups, e.g., spontaneous abortions (miscarriages) in pregnant women or various
complications in neurologically impaired patients.
In a rapidly growing pandemic wave, most state and local health departments do not have the capacity
to count every hospitalization or death without depleting limited public health resources. Therefore,
more efcient and sustainable surveillance methods are necessary to obtain the key data needs during
a moderate or severe pandemic, including a qualitative assessment of local infuenza activity combined
with virologic sampling of a representative number of viral isolates.
Recommendations
It is not possible to address all of these limitations before the autumn wave of 2009-H1N1. (In Chapter
8, we recommend long-term measures to erect a comprehensive and population-based infuenza sur-
veillance system that would address data needs for decision making in seasonal infuenza and future
pandemics.)
The Working Group believes, however, that CDC can take a number of steps in the coming weeks to
signifcantly improve critical data for decision making.
Below, we suggest several specifc measures that may improve situational awareness and decision
making through the autumn wave. These recommendations attempt to balance the need for improved
data with the practical constraints of assembling systems to acquire these data in a short time frame. We
recognize that eforts to address many of these needs, and many other aspects of surveillance, are ongo-
ing; we highlight here aspects that appear to be both urgent and addressable within a short time frame.
MAIN RECOMMENDATION (CHAPTER 4)
We recommend that DHHS take rapid advantage of available opportunities to upgrade national
surveillance systems to improve decision making during the fall resurgence The critical surveil-
lance information for decision making includes data on in?uenza-like symptoms in the population,
emergency room admissions, health system utilization, hospitalized patients, and adverse events.
24 24 25
IV. ENSURI NG ADEQUATE DATA FOR DECISI ON MAKI NG: SURVEI LLANCE SYSTEMS
Needs/gaps in existing systems and possible approaches: Most states and many large cities have imple-
mented their own syndromic surveillance systems in emergency departments. These electronic systems
provide valuable information on ILI trends based on symptoms that bring patients to medical care cen-
ters. These systems often collect data within 12 to 24 hours of patient visits. However, these state and
local systems currently are not integrated, making it difcult to obtain regional or national situational
awareness of infuenza activity based on reports from individual centers.
For example, the International Society of Disease Surveillance has implemented a simple and fexible
integrated system and collects aggregate counts of ILI syndromes by age group in order to monitor
and compare ILI activity throughout the United States very quickly (e.g., see the International Society
of Disease Surveillance’s DiSTRIBuTE system). However, only nine jurisdictions (a mix of cities, counties,
and states) participate. This system could form a natural template for additional data feeds. We believe
it may be feasible to expand this or other systems in the coming weeks and we are aware of eforts by
CDC to do so.
Expected benefts: This system would provide a national picture, with some local resolution, of trends in
the numbers of patients visiting emergency departments, the percentage of such patients with ILI, and
the distribution of ILI by age. Such information would allow Federal, state, and local ofcials to obtain
a better sense of the trajectory of the outbreak (in scale, scope, and pace) in diferent regions of the
United States over time. Systems of this type already are proving useful for evaluation of local control
measures, although additional information is required to assess the severity of disease associated with
the 2009-H1N1 virus (e.g., cases requiring hospitalization or case fatality rates).
Needs/gaps in existing systems and possible approaches: Existing systems do not establish the number
of ILIs occurring in place and time as a rate per 100,000 population. This precludes estimates of severity
because the severe cases, which are better ascertained, cannot be related to overall levels of infection.
RECOMMENDATION 4-1: EMERGENCY ROOM DATA
We recommend that CDC rapidly assemble an integrated system, by combining syndromic sur-
veillance and emergency department data from existing local and state surveillance systems
into a geographically representative national network, that rapidly reports total and ILI-related
emergency visits.
RECOMMENDATION 4-2: POPULATION SAMPLING
We recommend that CDC implement a system to measure the burden of ILI on a weekly basis.
Although nationally representative data would be valuable, it may be bene?cial for these surveys
to oversample in jurisdictions that have relatively robust surveillance plans in place for tracking
in?uenza-related primary care visits, hospitalizations, and deaths in order to more accurately
monitor changes in rates of more severe illness over time.
26 26
REPORT TO THE PRESI DENT ON U. S. PREPARATI ONS FOR 2009-H1N1 I NFLUENZA
27
This may be accomplished through web-based or telephone-based surveys.
Expected benefits: These studies would provide approximate denominators of mild and medically
attended illness against which more detailed data on hospitalizations and fatalities can be compared.
Such denominators are especially important for estimating severity of infection and consequently for
predicting peak burdens on health care: for a given number of severe outcomes, the overall severity
is much less if there are many cases of mild illness or of symptoms that do not cause a patient to seek
medical attention. Data from random public surveys would reduce, although not eliminate, the uncer-
tainties cited above concerning overall severity. In addition, the surveys would provide an independent
measure of the number of people afected by illness that may be attributable to 2009-H1N1 and to the
rate of change in these numbers. The interpretation of ILI activity due to 2009-H1N1 will depend on the
proportion of 2009-H1N1 compared to other circulating respiratory viruses in each community where
surveillance is taking place. In the spring, 2009-H1N1 was more prevalent; but in the fall, other viruses
will likely be circulating, such as respiratory syncytial virus (RSV) and seasonal infuenza. Thus, these
numbers will be best interpreted in conjunction with virologic data.
Needs/gaps in existing systems and possible approaches: Hospital and intensive-care utilization are not
routinely monitored in the United States. Southern Hemisphere countries are reporting stress on ICUs
from 2009-H1N1 illness even during a period of school holidays, and the epidemic probably has not
yet peaked. As noted above, DHHS is developing the HAvBED system, which may be expanded to meet
present needs. An alternative or complementary approach may be to integrate existing state and local
systems, such as the New York State Health Emergency Response Data System (HERDS). In any system,
it would be valuable for such data to be immediately available to state and local providers. Since most
hospitals maintain such information on a daily basis, the key is to implement a simple system that allows
defned information to be regularly uploaded.
Expected benefts: Acute stress on ICUs or increased demand for ventilators may be a trigger for resource
reallocation from less afected areas and/or for intensifying community mitigation measures. Accurate
measures of health care system utilization would facilitate more efcient sharing of resources.
RECOMMENDATION 4-3: HEALTH SYSTEM UTILIZATION
Because hospital facilities may become dangerously scarce in the fall, we recommend that DHHS
implement an integrated system to monitor health care system utilization overall and attributable
to respiratory infection, with an emphasis on incidence and prevalence of cases occupying hospital
beds, ICU beds, and mechanical ventilators.
26 26 27
IV. ENSURI NG ADEQUATE DATA FOR DECISI ON MAKI NG: SURVEI LLANCE SYSTEMS
Needs/gaps in existing systems and possible approaches: There is an important gap in our ability to assess
the clinical features of pandemic infuenza infections in an ongoing way to inform treatment and pre-
vention decisions. CDC’s Emerging Infections Program (EIP) reports population rates of infection with
confrmed infuenza. These data are valuable but are limited by variation in the sensitivities of immuno-
logical and nucleic-acid-based assays and by clinician discretion regarding whether to test. Adequate
personnel and funding should be available so that EIP sites have capacity to perform PCR-based tests
(which are more sensitive) and to test systematically rather than at clinician discretion.
For clinical information, existing data streams are limited and state and local health departments are
unable to follow up most hospital admissions to determine clinical course. Such data are particularly
critical and may change over time as the pandemic progresses, either due to changing susceptibility
in the population or changes in the virus. While it is not feasible to obtain clinical information for all
hospitalized patients, sentinel hospitals or EIP sites could be used to gather detailed clinical data in
a standardized fashion. In addition to these standard data, clinical studies—for example, on optimal
management of severe cases that do not respond to antiviral therapy—will be needed, and little time
is left to ensure that they will be ready to commence early enough to have maximal impact. In addi-
RECOMMENDATION 4-4: HOSPITALIZED PATIENT DATA
We recommend that CDC de?ne a mechanism to gather timely clinical, epidemiologic, and virologic
data on a representative sample of patients hospitalized for respiratory illness and ensure that
those data are available to inform national recommendations to clinicians, public health o?cials,
and the public. Such data could be gathered by assembling a network of participating sites, such as
sites currently specializing in in?uenza surveillance; healthcare systems with appropriate electronic
record-keeping systems; and states and localities interested in participating.
The data ideally would include:
A. Results of systematic testing of patients hospitalized for respiratory infection to determine
the presence of respiratory viruses including 2009-H1N1. To improve representativeness of
data, such testing would ideally be done within a de?ned population according to prospec-
tive criteria rather than according to clinician discretion.
B. Clinical data—including age, predisposing conditions, course of hospitalization (whether
admitted to ICU or ventilated), duration of hospital/ICU stay, and resolution (death, dis-
charge), vaccine status, presence/absence of bacterial secondary infections, and identity and
timing of antibiotic and antiviral administration—should be reported for a representative
sample of hospitalized cases of 2009-H1N1 infection.
In addition, it would be valuable for CDC to de?ne explicitly the most important clinical studies
needed to guide response during the autumn wave, gain Institutional Review Board approval, iden-
tify and fund sites to perform these studies during the early autumn, and put in place a mechanism
for rapid dissemination of results
28 28
REPORT TO THE PRESI DENT ON U. S. PREPARATI ONS FOR 2009-H1N1 I NFLUENZA
29
tion, waiting for peer-reviewed results to be published will likely diminish the value of any fndings, as
a manuscript submitted in mid-September might not be published until November, after the possible
peak of the epidemic.
To address these needs, CDC should work with existing sites that specialize in infuenza surveillance, or
research centers, to prospectively monitor for changes in the clinical or epidemiologic characteristics
of the virus over time. Other states or locales that have interest and capacity to participate should be
included, when possible, to improve geographic representativeness. These “sentinel sites” should use
standardized protocols and data collection instruments to ensure that timely and up-to-date clinical,
epidemiologic, and virologic data on patients hospitalized for respiratory illness are available to inform
national recommendations to clinicians, public health ofcials, and the public. Adequate funding will
be needed to support these sites.
Expected benefts: Such data streams, and CDC’s guidance based on them, would be of primary beneft
to clinicians and to vaccine planners in targeting prevention and treatment to groups at high-risk of
severe disease. Changes in risk groups or changes in clinical spectrum (e.g., more rapid progression
to death, increasing need for ICU care or ventilation among hospitalized cases) may be early signs of
changes in the virus or in other factors, such as bacterial superinfection, that would warrant changes in
control measures or clinical management. Such changes are not observable now because of the lack of
ongoing clinical characterization of severe cases. A rapid means to disseminate clinical data and results
of key clinical studies would provide clinicians with needed information while it is most valuable.
Needs/gaps in existing systems and possible approaches: Existing VAE detection systems and surveillance
planned for the fall focus on detection of rare complications, such as Guillain-Barré syndrome. In an
atmosphere of heightened public concern, common adverse events occurring in high-risk groups likely
to be early candidates for vaccination (e.g., spontaneous abortions) may be expected to occur frequently
among early vaccine recipients, even if the vaccine is perfectly safe. A mechanism is needed to evaluate
the possible contribution of vaccine to such common adverse events to address public concerns, even
if the plausibility of such associations is low.
Major existing adverse event detection systems such as CDC’s Vaccine Safety Datalink rely on linked
medical records, including vaccination and adverse events for the same persons. If public distribution
RECOMMENDATION 4-5: ADVERSE EVENTS
We recommend that DHHS ensure the adequacy of surveillance systems and signal evaluation
systems for vaccine-associated adverse events (VAE), with particular focus on the risk of common
adverse events that are likely to occur at high rates in high-risk populations (e.g., pregnant women)
and whose association with vaccination may be di?cult to assess rapidly.
In addition, we believe it would be valuable for DHHS to assess the adequacy of existing systems
for VAE reporting to detect rare events in settings of nontraditional vaccine distribution (e.g., in
public settings, such as malls) and take steps to improve these systems where needed.
28 28 29
IV. ENSURI NG ADEQUATE DATA FOR DECISI ON MAKI NG: SURVEI LLANCE SYSTEMS
of vaccine occurs, these systems might not accurately record vaccination status, hence may be unable
to function as normal to detect and evaluate signals of adverse events.
Expected benefts: Systems to address vaccine safety are crucial to the success of any vaccination program
but will be of particular importance this fall given likely heightened awareness of such issues during a
pandemic and during a rapid mass vaccination campaign.
Conclusions
Given the short time until the expected resurgence of 2009-H1N1, it is not feasible to create entirely new
surveillance systems. Nonetheless, we believe that it may be feasible to signifcantly improve surveil-
lance capabilities by upgrading existing systems. Such improvements could have the following direct
benefts for decision making.
• Continuously updated clinical information will provide a basis for national recommendations
to physicians, with reliable data on who is at highest risk and which treatments are most efec-
tive for such patients.
• Emergency department surveillance, combined with a system to monitor demand on hospitals,
can provide a considerably stronger basis for decisions about resource allocation to overtaxed
areas and for assessing the need for enhanced community mitigation measures to slow demand
on the health system.
• Emergency department surveillance and population-based surveys will inform estimates of the
current stage of the epidemic and its trajectory.
• Adequate reporting and analysis of adverse events is crucial to ensuring vaccine safety and to
maintaining public acceptance of the vaccine.
We are aware that CDC is developing plans to expand its surveillance eforts for fall 2009 and we strongly
support such eforts.
31
31
V. Responding to the Pandemic
Introduction
Infuenza epidemics cannot be prevented with currently available tools, but four categories of methods
are available to mitigate the efects of an epidemic:
1. Vaccines to prevent infection. For seasonal infuenza, vaccines reduce the risk of serious disease
in infants and children, pregnant women, older adults, people who have chronic medical con-
ditions, or those who might infect high-risk people through their work or household contact.
CHAPTER SUMMARY
The impact of in?uenza epidemics can be mitigated by four methods: vaccination, administration of
anti-viral drugs, symptomatic medical care, and non-medical interventions that reduce viral transmis-
sion. Decisions to implement these approaches depend on a variety of factors, especially the nature and
course of the epidemic and the availability of materials, personnel, and delivery systems.
Because the in?uenza virus spreads rapidly and often e?ciently, little time is generally available to
respond once medically signi?cant outbreaks occur. It is thus critical that scenario-based plans be made
in advance for each of these interventions. It is equally important that a well-de?ned process for decision
making be established, with clear assignments of responsibility and logical, agreed-upon guidelines
for evidence-based decision making.
The Working Group was impressed with the very active engagement by many highly competent people
in multiple Federal agencies who are thinking about the decisions that need to be made. However, as
the fall resurgence nears it is especially important to be certain the roles and responsibilities of these
individuals in decision making, as well as the processes used to arrive at decisions, are clear. The Working
Group believes that it would be valuable to (1) clarify decision-making authorities and processes, and
(2) adopt a more structured decision-making framework for certain key decisions.
We recommend that the Homeland Security Advisor assume responsibility for identifying the people,
agencies, and processes for making decisions in the next phases of the 2009-H1N1 pandemic; for guar-
anteeing that all necessary decisions are made in a timely fashion; and for presenting recommended
courses of action to the President.
In addition, we examine critical issues in each of the four areas of intervention and make speci?c rec-
ommendations about the processes and information required for decision making in those areas. In
particular, we encourage the responsible agencies to focus immediately on decisions that could reduce
severe disease and death in especially vulnerable populations by accelerating the delivery and use of
vaccines, increasing the appropriate use of anti-viral drugs, and ensuring access to intensive care facilities.
Finally, we comment on the ways in which decisions made to mitigate disease in the United States might
a?ect the many other countries likely to be a?ected by the 2009-H1N1 pandemic.
32 32
REPORT TO THE PRESI DENT ON U. S. PREPARATI ONS FOR 2009-H1N1 I NFLUENZA
33
2. Antiviral drugs to decrease the likelihood of infection or severe disease in uninfected individu-
als (usually those with known or suspected exposure); to reduce the severity and duration of
disease in patients already infected and ill; and to lower the rate of virus shedding in infected
individuals, thereby decreasing the likelihood of transmission to others.
3. Medical care to manage clinical illness, which may range from mild to extreme, delivered at
home, in out-patient clinics, hospitals, and intensive care units.
4. Non-medical mitigation practices, including isolation of infected individuals, hand washing,
and several forms of social distancing such as school closures, cancellation of sporting events,
etc., to lower the chances of person-to-person transmission of virus.
Because the infuenza virus spreads rapidly and often efciently, little time is generally available to
respond once surveillance methods reveal medically signifcant information. For this reason, it is critical
that plans be made in advance for the production, acquisition, and delivery of medical interventions,
such as vaccines and drugs; the provision of facilities and materials for patient care; the mobilization
of necessary health personnel; and the communication of information about both medical and non-
medical mitigation strategies. In addition, a well-defned process for decision making needs to be
established well in advance, with clear assignments of responsibility and logical, agreed-upon guidelines
for decision making.
Responding to the anticipated 2009-H1N1 infuenza epidemic in the coming months will require com-
plex coordination—across diferent agencies of the Federal Government, vertically across the various
levels of government (Federal, state, local), between public ofcials and health professions and insti-
tutions, and between the public and private sectors. “Coordination” across agencies and participants
can be wasteful and frustrating if there are ambiguous responsibilities and unclear lines of authority.
Rather than focusing on coordination per se, it is more productive to emphasize clarity about leadership,
responsibilities, roles, and communication.
The Working Group has been impressed by the active engagement by many highly competent people
in multiple Federal agencies who are thinking about the decisions that need to be made about eforts to
mitigate the efects of the spread of 2009-H1N1 infuenza virus in the United States this fall and winter.
The Working Group has some concerns, based on conversations with representatives of the various
agencies involved, that decision-making authorities and processes may not be completely clear in all
cases. Primary Federal responsibilities for response to an epidemic are lodged in two departments (DHHS
and DHS), with signifcant involvement of others (Education, Defense, State, Agriculture, Labor), and
coordination by White House staf. While the National Strategy for Pandemic Infuenza Implementation
Plan provides a comprehensive list of assignments for a multitude of ofces, agencies, and departments
involved in the Federal planning process, the large number of tasks and responsible units tends to
obscure the primary seat of responsibility. (See www.pandemicfu.gov/plan/federal/pandemic-infuenza-
implementation.pdf.) The Working Group believes it would be valuable to clarify these matters before
events accelerate in September and assign to the Homeland Security Advisor the responsibility for
ensuring that all of the important decisions are made in a timely fashion and with appropriate consul-
tation with the President.
32 32 33
V. RESPONDI NG TO THE PANDEMI C
In addition to clarifying authorities, the Working Group believes it would be valuable to adopt structured
frameworks for making certain key decisions. At the time of our study, agencies had not yet formalized
decision frameworks but were moving to do so. We strongly endorse these eforts. We urge that they
attempt to be as precise as practical with respect to overall goals, scenario-based assumptions, required
data elements, quantitative trigger points, expected benefts, and expected costs. It would be valuable
to circulate these analyses within the government. Where feasible, it could also be desirable to share
them publicly through an appropriate channel to gain the beneft of expertise outside government;
this would be consistent with the Administration’s commitment to open government.
In the sections that follow, we discuss specifc issues that should be addressed in making decisions
about each of the categories of mitigation methods, and we ofer specifc recommendations about
how to approach those issues.
MAIN RECOMMENDATION (CHAPTER 5)
As the fall resurgence nears, important decisions will have to be made rapidly and based on limited
data. It is important to be certain that roles and responsibilities in decision making, as well as the
processes used to arrive at key decisions, are clear. The Working Group believes that the White
House is best positioned to ensure that these systems are in place, building upon the strong coor-
dination role it is already playing.
We recommend that the White House designate an individual, preferably the Homeland Security
Advisor, to be responsible for coordinating all policy development for the 2009-H1N1 response;
identifying the people, agencies, and processes for making key decisions; guaranteeing that all
necessary decisions are made in a timely manner; and presenting recommended courses of action
to the President.
Concerning decision-making authority, it will be important to identify the individual(s) responsible
for organizing the decision-making processes for each of the mitigation measures. For most key
decisions discussed in this Chapter, the responsible individual should be the Secretary of DHHS.
Concerning decision-making processes, it would be valuable to employ structured decision frame-
works incorporating scenarios—including an assessment of required data, speci?c trigger points
for action, and a forecast of bene?ts (e.g., decreased morbidity and mortality, decreased trans-
mission) and costs (e.g., ?nancial loss and social disruption). We are aware of and endorse e?orts
already underway to create such structured analyses. Such documents should be shared within
government and, where feasible, shared with experts outside government.
The most urgent attention should be given to the priority decisions necessary to support vaccine
and antiviral allocation and deployment, the national medical response, and the implementation
of non-medical mitigation strategies, as described below.
34 34
REPORT TO THE PRESI DENT ON U. S. PREPARATI ONS FOR 2009-H1N1 I NFLUENZA
35
Vaccines and Antiviral Drugs
The two main medical lines of defense are vaccination and antiviral drugs. Vaccination constitutes the
best defense against an epidemic, but its efectiveness depends on timing and coverage of the popula-
tion. Both inactivated and live attenuated infuenza vaccines are approved for use. (See Box 5A) Antiviral
drugs can provide a powerful tool for prophylaxis for exposed individuals and for treatment, especially if
used within 48 hours of the appearance of symptoms, but with possible benefts for treatment of severe
cases thereafter. Two inhibitors of infuenza neuraminidase, oseltamivir and zanamivir, are approved and
efective against 2009-H1N1 virus. (See Box 5B)
BOX 5A: INFLUENZA VIRUS VACCINES
Two types of vaccines are FDA-approved, recommended for seasonal in?uenza among the elderly
and young children, and now being manufactured at ?ve pharmaceutical companies in response
to orders from the Federal government for use in the 2009-H1N1 in?uenza pandemic.
Inactivated vaccines are the most widely used. They are prepared by growing viruses in embryo-
nated chicken eggs and then inactivating them by treatment with ethyl ethers or detergents.
Inactivated vaccines contain all the viral structural proteins and are administered via injection, usu-
ally in a single 15 microgram dose that is made available in multi-dose vials or single-dose syringes.
Live attenuated vaccines are made from cold-sensitive variants of the virus that are also produced
in chicken eggs, partly puri?ed, and administered to the nasal mucosa, usually with a nasal spray
device.
Other approaches to making in?uenza vaccines by growth of virus in cell culture or by recombinant
DNA methods are being studied and are described in Chapter 8. In addition, it may be possible to
augment the e?ectiveness of in?uenza vaccines through the use of adjuvants, substances that
stimulate the immune response to viral proteins. Use of adjuvants with in?uenza vaccines has not
yet been approved by the FDA, but is permitted in Europe. Depending on the outcome of clinical
tests, adjuvants could be added to 2009-H1N1 vaccines under the terms of an Emergency Use
Authorization (EUA) from the FDA.
34 34 35
V. RESPONDI NG TO THE PANDEMI C
The Working Group has identifed several important decisions that need to be taken—immediately
in some cases, rapidly in all cases—if these two mitigation measures are to be employed to maximum
efect this fall:
(1) Accelerate vaccine production. The expected timing of vaccine availability poses signifcant chal-
lenges, as seen from the following considerations:
• Although revisions of the schedule are under consideration by DHHS, plans announced in July
by the HHS Secretary would provide the frst signifcant quantities of 2009-H1N1 vaccine in
mid-October; an efective immune response would take another 2 to 4 weeks to develop after
vaccination. Under the model scenario described in Chapter 3, the resurgence of the epidemic
would start in September and peak in mid-October. If this model is approximately correct with
respect to timing, a vaccination campaign would not begin to protect vaccinees until well after
the epidemic had peaked.
• Certain groups are already known or suspected to be at high risk for serious complications and
death from 2009-H1N1, and are likely to account for a signifcant minority of serious morbidity
and mortality. Based on current information, groups at relatively high risk include pregnant
women, individuals with certain neurological impairments, asthmatics, and others (see Chapter
3). In addition, high numbers of severe cases and deaths were observed among children and
young adults. These groups would disproportionately beneft from early access to vaccine.
BOX 5B: ANTIVIRAL DRUGS FOR INFLUENZA
Two classes of antiviral drugs have been developed and approved for use in the treatment of
in?uenza.
One class, the amantadines, blocks the virus life cycle by interfering with a small viral protein
called M2. This class of drug is not e?ective in the treatment of either 2009-H1N1 virus or the cur-
rent seasonal in?uenza viruses and is thus not considered further here.
The second class, the neuraminidase inhibitors, includes two agents—oseltamivir (TamiFlu,
taken orally) and zanamivir (Relenza, inhaled)—that are FDA-approved and widely used as pro-
phylaxis against disease (among those known or likely to be exposed to infected individuals) and
as treatment (for patients diagnosed with in?uenza). Treatment is most successful when begun
soon after infection; the agents also reduce the amount of infectious virus produced by infected
individuals. The drugs are often used in the management of severe in?uenza, but intravenous
delivery of these two agents, or of a third agent (peramivir), in advanced stages of development,
has not yet been approved by the FDA. Resistance to these agents, especially oseltamivir, as a result
of viral mutation or genetic recombination, can be a major factor limiting antiviral e?ectiveness;
seasonal in?uenza viruses increasingly show resistance to oseltamivir, but thus far only a few of
the many isolates of 2009-H1N1 virus have shown resistance to oseltamivir.
36 36
REPORT TO THE PRESI DENT ON U. S. PREPARATI ONS FOR 2009-H1N1 I NFLUENZA
37
Given these circumstances, it is important to consider options for accelerating the availability of vac-
cine supplies, at least for individuals at elevated risk, estimated to represent nearly 40 million in the U.S.
Currently, vaccine availability is gated by results of clinical studies concerning safety and optimal dose
(expected in mid-September), after which manufacturers can “fll and fnish” the vaccines at the appro-
priate doses (which requires another 3–4 weeks). Inactivated vaccine for seasonal infuenza is usually
administered at a dosage of 15 micrograms; a similar dosage is expected to work for the 2009-H1N1
vaccine, but this will not be known with certainty until results from clinical studies are available.
We thus recommend a “hedged” strategy in which an initial amount of product is packaged “on risk,”
assuming a 15 microgram dosage, and the remainder is packaged when dosing and safety information
becomes available in mid-September following the frst results of clinical trials conducted by the NIH and
industry. The risks of this course of action appear to be relatively low: some vaccine product could be
wasted by flling vials at sub-optimal doses. If a somewhat larger dose is required, however, physicians
can administer additional vaccine (e.g., a second dose of 15 micrograms to achieve 30 micrograms).
The optimal amount of vaccine will need to be determined from immunological responses in clinical
tests and an appropriate decision analysis. However, it seems clear that flling and fnishing up to 40
million doses could have a substantial efect on the incidence of disease and death in these vulnerable
populations.
The Working Group recognizes that there are important considerations for manufacturers as they con-
template reconfguring their “fll and fnish” operations to meet accelerated deadlines. If DHHS elects
to follow this approach, a highly knowledgeable Federal decision-maker would need to work promptly
with one or more of the pharmaceutical companies already contracted to produce vaccine to execute
this strategy.
We note that the National Biodefense Science Board has also encouraged accelerated production and
that the strategy is under consideration by the relevant DHHS agencies.
(2) Focus on protecting those at highest risk. Because the most severe outcomes appear to be con-
centrated in certain groups, based on data thus far with 2009-H1N1, it is logical to assume that focus-
ing mitigation eforts on those groups will have disproportionate public health benefts. In addition to
accelerating the availability of vaccine, it is important to develop clear guidance about the means of
access and appropriate use of vaccines and anti-viral drugs for these groups and to communicate that
guidance to them and their health care providers promptly and efectively (discussed in Chapter 7). We
note that the complex and distributed nature of the U.S. healthcare system poses logistical challenges
in accomplishing these goals, which will require considerable planning.
RECOMMENDATION 5-1: ACCELERATING VACCINE AVAILABILITY FOR
HIGH-RISK GROUPS
We recommend that DHHS accelerate the availability of a portion of the vaccine supply to mid-
September by having manufacturers begin to “?ll and ?nish” a subset of the bulk vaccine product
at 15 micrograms. Such a decision would need to be taken almost immediately.
36 36 37
V. RESPONDI NG TO THE PANDEMI C
This strategy will require attention to important questions about the specifc recommended interven-
tions, both medical and non-medical. To cite just one example, what guidance concerning antiviral
prophylaxis should be given to a pregnant schoolteacher whose class has two students who are at home
after contracting symptoms of 2009-H1N1 infuenza?
(3) Manage anti-viral stockpiles. The United States currently has Federal and state stockpiles of approxi-
mately 90 million courses of antivirals (consisting of roughly 80 percent oseltamivir and 20 percent
zanamivir). Each course represents one week of treatment; an individual taking prophylaxis for three
months would thus consume 12 courses. There is little or no additional supply available for purchase
through the end of 2009. The existing stockpile must thus be used prudently.
The Working Group has heard concerns expressed that there is a risk of depleting the stockpile if it is not
managed properly (for example, if used for widespread and prolonged prophylaxis of health care workers
or the general public). It is important that antiviral drugs be available for treatment and for prophylaxis
for those at greatest risk of serious illness (prioritized groups directly exposed to virus). Once antiviral
drugs are released from the national stockpile, the states and localities control their use. Still, CDC has
an important infuence through its guidelines on the use of these drugs. The Working Group heard con-
cerns that the existing CDC guidelines may not be sufciently strong and clear to promote optimal use.
RECOMMENDATION 5-2: PROTECTING HIGH-RISK GROUPS
We recommend that DHHS undertake a focused program to identify and maximize protection of
individuals at high risk of severe outcomes if infected with 2009-H1N1.
This process should include:
A. reviewing existing knowledge about nH1N1 hospitalizations, ICU admissions and deaths to
strengthen the list of groups at highest risk for these events;
B. developing plans to mobilize these groups (and their health care providers), generate guid-
ance for members of these groups to follow in deciding when to use such medication, and
dispense antiviral drugs when indicated;
C. using these mobilization strategies to reach the same groups for vaccination, and begin
o?ering vaccine as soon as supplies become available; and
D. considering plans to o?er existing vaccines against other respiratory pathogens to members
of such groups (severe consequences of in?uenza virus infection often result from secondary
infection, such as pneumococcal pneumonia).
38 38
REPORT TO THE PRESI DENT ON U. S. PREPARATI ONS FOR 2009-H1N1 I NFLUENZA
39
(4) Intravenous antivirals. Severely ill patients may beneft from the intravenous use of neuraminidase
inhibitors. (For example, in the model scenario described in Table 3-1, as many as 300,000 patients are
envisioned to require treatment in an ICU). However, no antiviral drugs have been approved by FDA for
intravenous use. There are some initial clinical data on intravenous use of the approved drugs oseltamivir
and zanamivir and more advanced clinical data for peramivir, a new drug with a somewhat diferent
resistance profle than oseltamivir. The Working Group urges FDA to work with drug manufacturers to
determine whether these drugs can be used intravenously as a result of accelerated approval or under
the terms of an Emergency Use Authorization (EUA).
(5) Trigger for using adjuvant. The efectiveness of vaccines can often be increased by co-administra-
tion with adjuvants, substances that can amplify an immune response when mixed with an appropriate
antigen, allowing the dosage of antigen to be decreased. Thus a given amount of antigen can be used
to immunize more individuals. This strategy may be important if a vaccine is poorly immunogenic (and
thus requires a large quantity of antigen) or if vaccine supplies are insufcient to fll an urgent national
need. A supply of one adjuvant (MF59) has been ordered and stockpiled for possible use with the 2009-
H1N1 vaccine.
Adjuvants are not currently approved for use with infuenza vaccines in the United States, although
they have been approved and are being used with infuenza vaccines in Europe. Accordingly, the use
of adjuvants would require an EUA by the FDA. Given these circumstances, there is reluctance to use
adjuvants unless they are clearly necessary to extend the vaccine supply.
The Working Group encourages DHHS to develop quantitative criteria (vaccine efcacy, severity of
epidemic) that would trigger a decision to use adjuvants and to ensure that sufcient data are available
for the FDA to grant an EUA.
(6) Plan for a national vaccination campaign. A decision to vaccinate portions or the entirety of the
U.S. population against infuenza virus is an important step, but the public health consequences of that
RECOMMENDATION 5-3: ANTIVIRAL DRUGS
We recommend that CDC clarify and strengthen its guidelines for use of antiviral drugs, including
for treatment, pre-exposure, and post-exposure prophylaxis, and contingency plans for the devel-
opment of drug resistance. These guidelines and plans, and their rationales (including preservation
of limited supply for those in greatest need), should be clearly communicated to state and local
health departments, health care practitioners, and the public. State and Federal supplies of antiviral
drugs should be monitored on a frequent basis.
RECOMMENDATION 5-4: INTRAVENOUS ANTIVIRALS
We recommend that FDA accelerate a decision about the availability of antiviral drugs (peramivir,
zanamivir, or oseltamivir) for intravenous use.
38 38 39
V. RESPONDI NG TO THE PANDEMI C
decision depend heavily on the manner in which the decision is announced, the recommendations
that are made about who should receive vaccine, and the system(s) chosen to distribute and deliver
the vaccine. Without those additional steps, actual use of the vaccine may be low or the vaccine may
be used inappropriately. The Working Group encourages DHHS to accelerate the planning required
for an efective campaign, taking into consideration some of the recommendations about commu-
nication practices ofered in Chapter 6. The ACIP has already proposed to CDC that up to 160 million
people should be considered preferentially for vaccination against 2009-H1N1 virus, and a subset of
those individuals should be prioritized according to criteria mentioned earlier in this chapter. Plans for
a national campaign will need to incorporate appropriately those priorities and target messages about
the vaccine. The complex and distributed nature of the U.S. healthcare system makes a coordinated
national efort particularly challenging; considerable attention will need to be focused on the many
logistical challenges.
(7) Surveillance of vaccine efectiveness and vaccine-associated adverse events. Clinical testing of
an infuenza vaccine allows scientists to determine whether that vaccine produces a measurable immune
response that has been correlated with some degree of clinical protection. However, it does not directly
determine whether the vaccine elicits protective immunity against infection that is a conclusion that
can only be frmly drawn by studying groups of vaccinated and control individuals over longer periods
of time. Furthermore, initial clinical tests usually are conducted with small groups of healthy individuals,
so rare adverse events and complications associated with pre-existing medical conditions are unlikely
to be encountered. In view of these circumstances, it will be important that CDC, FDA, and NIH develop
a collaborative plan to monitor appropriately designated groups of vaccinees, based on age, location,
or pre-existing conditions, to assess the efectiveness of the vaccines and study any adverse reactions.
These observations will be especially useful if a virus closely related to 2009-H1N1 returns in future years
Medical Response
As discussed in earlier chapters, even in the absence of changes in the characteristics of the 2009-H1N1
virus, the capacity of some communities to provide an appropriate medical response to ill patients is
likely to be strained and possibly overwhelmed at the peak of the anticipated fall outbreak. It is impos-
sible to predict where and when this will happen, so it is important that all communities be prepared
for this possibility. During spring and summer 2009, the 2009-H1N1 pandemic has stressed the health
care system in several countries, including parts of the United States, Argentina, Canada, Chile, and
Mexico, and this has provided an opportunity to learn from the health system response in these places.
Given the structure of the U.S. health care system, the response to these “surge” requirements will be
addressed at the local, state, and regional levels, with the majority of capacity coming from private and
non-proft facilities that are outside of government. Nevertheless, the Federal Government will play
a critical supporting role in this response—by providing guidance to communities on strategies that
address the medical requirements; by relaxing legal and regulatory constraints; by mobilizing Federal
personnel to assist in the response; and, in some cases, by providing medical materiel from the Strategic
National Stockpile. Furthermore, while the Working Group recognizes that the potential inadequacy of
the Nation’s medical “surge” capacity cannot be closed in the immediate future, we believe that use of
40 40
REPORT TO THE PRESI DENT ON U. S. PREPARATI ONS FOR 2009-H1N1 I NFLUENZA
41
existing capacity can be improved and made more equitable by expanded monitoring and allocation
of scarce resources (such as ICU beds and ventilators) used to care for the most critically ill patients, as
described in Chapter 4 (see Recommendation 4-4) and by the development of procedures to mobilize
equipment, personnel, or patients.
RECOMMENDATION 5-5: MEDICAL RESPONSE
In its e?orts to prepare the Nation’s complex health care system for the likely increase in cases
of severe 2009-H1N1 in?uenza, we recommend that DHHS emphasize the following approaches:
A. Using planning scenarios, forecast requirements for hospital beds, ICU beds, personnel,
equipment, and medical materiel to inform state and local authorities in their planning
e?orts. Special attention should be given to the capacity to care for critically ill infants and
children, as most adult ICU facilities are not fully equipped to handle these patients, and
potentially high-risk populations for whom the Federal Government has speci?c responsibili-
ties, such as American Indians/Alaska Natives. Guidance should be o?ered on (1) strategies
and best practices to close critical gaps, and (2) Federal resources available to assist in this
e?ort (e.g., through the Strategic National Stockpile).
B. Use national surveillance systems, in collaboration with state health authorities, to maintain
up-to-date situational awareness of the medical response across the country, as recom-
mended in Chapter 4 (see Recommendation 4-4). These e?orts should aim to determine
which locations are under the greatest duress; track clinical presentation of infection and
e?ectiveness of interventions; and understand which medical surge strategies are most
e?ective.
C. Determine the authorities, protections, and guidelines necessary to maximize a community’s
ability to allocate scarce resources in the most appropriate, ethical, and just manner, without
fear of inappropriate penalties. The intent is to ensure uniformity in the allocation of scarce
and perhaps life-saving medical resources, such as ventilators, across communities.
D. Consult with relevant professional societies and health care organizations to ensure that
guidance for protection of health care workers from the e?ects of 2009-H1N1 is supported
by the evidence, feasible to implement, and is harmonized among multiple sources. Relevant
societies include the Society for Healthcare Epidemiology of America (SHEA), the Infectious
Diseases Society of America (IDSA), and, where recommendations concern children, the
American Academy of Pediatrics (AAP).
E. Work closely with state and local health personnel to prepare the public to self-triage and
manage illness at home or at alternative care facilities when appropriate, using scalable solu-
tions such as national toll-free phone lines and web-based instructions where appropriate
(as discussed further in Chapter 6).
40 40 41
V. RESPONDI NG TO THE PANDEMI C
Non-medical Mitigation Measures
The Federal Government’s planned response to a pandemic virus includes community mitigation
measures, including “social distancing,” cancellation of public gatherings, voluntary home quarantine,
and school closure. Implementation of these measures has been linked to the severity of the pandemic,
which the Federal Government has codifed through a “Pandemic Severity Index” or PSI. The PSI for the
2009-H1N1 pandemic proved to be very difcult to assign early in its course in North America: the PSI
depends primarily on the “case fatality rate,” which cannot be calculated with certainty when the total
number of infected persons is unknown. Implementation of the more signifcant interventions, such as
school closure, has proved to be controversial, due to a perceived imbalance between the negative fnan-
cial and social consequences of the intervention relative to the perceived mildness of the pandemic virus.
Valuable lessons about community mitigation have been learned in the United States, the United
Kingdom, Japan, Mexico, and elsewhere since the emergence of the 2009-H1N1 virus, and have also
been gleaned from historical accounts of past epidemics. The Working Group believes it is essential to
capitalize on these lessons and ensure that communities are prepared to implement appropriate com-
munity mitigation measures depending on the course of the pandemic this fall.
The importance of such preparations is underscored by the following observations: (a) it is possible that
the virulence of the virus could increase in subsequent waves, as happened in 1918–19; (b) even at the
current level of virulence, the demand on the health care system in some communities is likely to exceed
available capacity, necessitating measures to slow the spread of the virus; (c) the sheer number of cases
in a given community, along with concern among the public, may lead to unplanned school closure and
absenteeism in the workplace; and (d) it is unlikely that signifcant proportions of the population will
have vaccine-mediated immunity at the time the 2009-H1N1 virus returns to a given community this fall.
The Working Group recognizes that many components of the Federal Government, including DHHS/
CDC, NSC, and the Departments of Labor, Homeland Security, State, and Defense are engaged in discus-
sions of non-medical mitigation methods and that national guidance is being developed. We suggest
that adequately resolving these issues will require a greater quantitative specifcity, in particular, of
the trade-ofs between the medical beneft gained and social disruption caused by school or institu-
tional closure. The costs and benefts of these measures have not, to our knowledge, been adequately
weighed in quantitative terms. For example: although there is signifcant evidence, as well as logic, to
support the idea that school closure (and presumably similar social distancing actions) can reduce virus
transmission, clear analyses are needed of what specifc efects on the spread of infection in diferent
types of communities are likely to result from school closures at diferent infection prevalence. Even
more difcult to assess are the economic and social costs of implementing such measures. Although
evidence-based estimates of such costs are difcult to make and inherently imprecise, they can help to
advance the rationality of the debates, especially if performed in the context of specifc scenarios for
the severity of an epidemic.
Finally, we note that there currently appears to be no value in using border closures or travel restric-
tions as social mitigation measures, as the H1N1 infuenza virus is already well-established in the U.S.
This situation could change if a more virulent or drug-resistant variant of 2009 H1N1 in another country
became a serious threat.
42 42
REPORT TO THE PRESI DENT ON U. S. PREPARATI ONS FOR 2009-H1N1 I NFLUENZA
43
International Considerations Presented by the Pandemic
In preparing for the resurgence of the 2009-H1N1 epidemic, protecting the U.S population is the Federal
Government’s primary responsibility. In addition, the Federal Government is concerned about the impact
of the pandemic on other countries in terms of health efects (diseases spread rapidly across borders
and epidemics do not end until they subside everywhere); economic consequences (pandemics can
disrupt the global economy, trade, tourism, political stability, and foreign policy); and, importantly,
humanitarian reasons (rooted in deeply held national values).
There is reason to believe that under-resourced countries may be at special risk during infuenza epi-
demics. For instance, a recent study projected that, if a 1918–19-like pandemic were to happen today,
RECOMMENDATION 5-6: NON-MEDICAL INTERVENTIONS
We encourage CDC, working with other components of DHHS, the Departments of Education,
Homeland Security, Commerce, Labor, and others as appropriate, to prepare a document that
provides general guidance on non-medical interventions to mitigate the predicted recurrence of
the 2009-H1N1 pandemic in the United States. This document could be the basis for communication
of key messages to several di?erent constituencies, including local governments, school o?cials,
leaders of institutions and businesses with high concentrations of personnel, and organizers of
various kinds of public events, and it should include several important components:
A. A description of the lessons that have been learned about community mitigation measures
as a result of the experience in the United States, Japan, Mexico, and other places where
these measures were implemented during the 2009-H1N1 pandemic, as well as a summary
of lessons from earlier epidemics.
B. An account of the second- and third-order consequences of measures such as closure of
schools and other institutions or cancellation of public events, and strategies to limit their
impact.
C. An articulation of the goals of community mitigation measures if implemented (e.g., reduc-
tion in community-wide transmission, reduction in peak burden on health care system, pro-
tection of those most at risk for severe complications, reactive in response to absenteeism)
under various scenarios, and the impact this would have on implementation.
D. Triggers for implementation and adjustment of community mitigation strategies, based on
data that are likely to be readily available to decision-makers. These plans should include
strategies for communicating the recommendations to the public and state and local stake-
holders, as discussed in Chapter 6.
E. Methods for monitoring the e?ectiveness or ine?ectiveness of these interventions during
the expected fall outbreak, both to guide continued use in the fall and to gather knowledge
for use in future in?uenza outbreaks.
42 42 43
V. RESPONDI NG TO THE PANDEMI C
96 percent of the deaths would occur in the developing world. Given the relatively young demographic
profle, the widespread prevalence of co-morbidities such as malnutrition, HIV/AIDS, and tuberculosis,
and the fact that many of these countries do not have functional health systems, the 2009-H1N1 pan-
demic could have a devastating impact on developing nations. Serious outbreaks already have been
observed in underserved populations in the developed world. For example, aboriginal populations of
Manitoba, which represent 10 percent of the population, appear to have accounted for 30 percent of
cases of 2009-H1N1 infuenza in the province so far and the majority of 2009-H1N1-infected patients
requiring intubation in ICUs in Winnipeg.
While recognizing that issues with basic health infrastructure in developing countries cannot be rem-
edied in the short run, the availability of materials—including 2009-H1N1 vaccine, antiviral medications,
antibiotics, personal protective equipment, and other essential medical materials—may help mitigate
the impact of the epidemic. Unfortunately, global supplies of the most important of these items—vac-
cines and antiviral medications—are expensive and severely constrained; thus, large quantities are
unlikely to be readily available to developing nations. The vast majority of production capacity for 2009-
H1N1 vaccine, for instance, already has been reserved by industrialized countries.
Since 2005, the United States has taken a number of steps, often in conjunction with WHO, to support
global pandemic preparedness, including the open sharing of information about novel infuenza viruses
and establishing capacity in developing countries to rapidly detect and respond to infuenza viruses
with pandemic potential (see Box 5C).
BOX 5C: SAMPLING OF U.S. ACTIONS TO SUPPORT GLOBAL PANDEMIC
PREPAREDNESS
• Sharing viral isolates, sequence information, and technical expertise with WHO and regional
and national laboratories;
• Providing technical assistance to support country-level pandemic planning over the past
several years, including adaptation of community mitigation strategies to developing world
contexts;
• Providing technical assistance to support in-country public health and medical responses,,
including adaptation of clinical guidelines and implementation of medical surge plans;
• Providing resources to WHO, as well as personnel and technical assistance;
• Supporting the WHO Global Access Plan to establish vaccine production capacity in develop-
ing countries and the WHO-managed stockpile of antiviral medications;
• Providing extensive support of in-country laboratory and surveillance e?orts; and
• Supporting the response to 2009-H1N1 in?uenza in Mexico this spring, including a donation
of 400,000 courses of oseltamivir.
44 44
REPORT TO THE PRESI DENT ON U. S. PREPARATI ONS FOR 2009-H1N1 I NFLUENZA
45
Mindful of the urgency of protecting the U.S. population, the Working Group nonetheless believes that
the United States can play an important role in eforts to reduce the impact of the 2009-H1N1 pandemic
in developing countries, both independently and in collaboration with other countries and WHO. We
recognize that the current lack of a U.S. Agency for International Development (USAID) Administrator
and a Director of the Ofce of Global Health Afairs at DHHS has limited the institutional capacity to
work on these issues. Nonetheless, we believe these issues should be addressed.
An Improbable Scenario Requiring More Stringent Non-Medical Measures
The 1918–19 pandemic was characterized by a relatively mild frst wave of illness in spring 1918, fol-
lowed by much more severe second and third waves. This pattern could conceivably be repeated with
the 2009-H1N1 virus, leading to a far greater strain on communities than described in Chapter 3 or cur-
rently anticipated by the Federal Government. While the Working Group views this specter as highly
unlikely and inappropriate as a driver of Federal preparedness eforts, the possibility of such a “step
change” in the severity of the pandemic (e.g., to “Category 5” in the current Pandemic Severity Index)
cannot be entirely ignored. If it should occur, the Federal Government would be confronted with a
national crisis and the prospect of hundreds of thousands of deaths, millions of hospitalizations, and
a dramatic impact on the functioning of communities due to school closure, workplace absenteeism,
and fear-driven changes in people’s behavior.
Such an event would stress the Federal Government in ways that are not discussed in this report.
The Federal Government may be unable to respond to the number and scope of requests for Federal
assistance from state and local authorities, whether for support of the healthcare infrastructure or the
preservation of law and order. Communities may be unable to provide medical care to everyone in
need, raising the prospect of rationing of services and mortality that would otherwise be preventable.
RECOMMENDATION 5-7: THREE ACTIVITIES TO REDUCE THE IMPACT
OF THE EPIDEMIC ON DEVELOPING COUNTRIES
A. Take action to produce, purchase, or redirect vaccines, antiviral drugs, antibiotics, and medi-
cal materiel to developing countries in need of such support;
B. Use the in?uence of the United States, in collaboration with WHO, to convince other devel-
oped nations to pay close attention to the needs of developing countries during the pan-
demic and to encourage manufacturers to make vaccines and drugs available under donation
and/or tiered-pricing schemes to those developing countries that have the plans and the
capacity to use them e?ectively, and in the same time frame as these materials are made
available to developed countries;
C. Incorporate the international consequences of mitigation plans into Federal decision-making
processes for the pandemic—for example, by recognizing that e?orts to conserve antigen by
use of adjuvants in vaccines or to conserve antiviral drugs by restriction on inappropriate use
could liberate valuable materials for use in poor countries severely a?ected by the epidemic
44 44 45
V. RESPONDI NG TO THE PANDEMI C
Federal, state, and local authorities may take unilateral action such as border closure, seizure of essential
commodities, or curtailment of individual freedoms, out of fear or as a result of public pressure.
Under these circumstances, it would be necessary for the Federal Government to have streamlined
mechanisms for decision making and coordination of the national response. The capability for such
coordination extends well beyond the processes described earlier in this chapter, and falls into the realm
of “national incident management.” The Federal Government has spent a great deal of time develop-
ing systems for such coordination; the National Response Framework and associated documents are
the result of that work. But these systems have never been tested by an event of the scope and scale
described here. For this reason, it is essential that the Administration examine these systems of coor-
dination and the roles and responsibilities of all players—particularly the Departments of Homeland
Security, Health and Human Services, Justice, Defense, State, and Education—to ensure that the Federal
response can be scaled to the magnitude of the health crisis as warranted by the circumstances.
47
47
VI. Lowering Financial and Regulatory
Barriers to Efective Response
Introduction
As discussed in previous chapters, infuenza epidemics can be mitigated through medical and non-
medical interventions. To achieve their full beneft, such actions require the compliance of individuals
and organizations in many sectors, as well as adequate funding. The purpose of this chapter is to identify
the potential social, fnancial, and regulatory barriers to compliance and to recommend ways to lower
those barriers. Because the list of barriers and solutions below is likely to be incomplete, it would be
valuable for the Administration to undertake a systematic analysis of these issues.
CHAPTER SUMMARY
Legal, social or ?nancial obstacles may prevent institutions and individuals from taking useful actions
to confront an epidemic.
In this chapter, the Working Group describes several such barriers to e?ective actions and proposes
ways to overcome them in times of public health emergencies by providing funds, suspending certain
medical regulations, reducing ?nancial impacts on hospitals, using special authorities, and encouraging
action in the private sector.
We also recommend that the National Security Council, led by the Homeland Security Advisor, undertake
a systematic review of potential legal, social, and ?nancial barriers to action, to determine which might
reasonably be ameliorated during the time of the anticipated epidemic and to set plans in motion to
reduce or remove such barriers in accord with the observed severity of the epidemic.
MAIN RECOMMENDATION (CHAPTER 6)
The e?ectiveness of mitigation e?orts can be improved by (a) identifying potential legal, social, and
?nancial barriers to action in the face of an in?uenza pandemic; (b) developing speci?c solutions
and identifying triggers for implementing these solutions when feasible; and (c) ensuring that
relevant actors know about the intentions to deploy the solutions. We describe several potential
barriers, propose some solutions, and suggest that barrier-reducing activities be led by the National
Security Council and the Homeland Security Advisor.
48 48
REPORT TO THE PRESI DENT ON U. S. PREPARATI ONS FOR 2009-H1N1 I NFLUENZA
49
Emergency Funding for Federal, State and Local Actions
Responding to any widespread health emergency, such as an infuenza epidemic, requires substantial
resources from public and private sources, and the current economic recession is a potentially limiting
factor in the provision of such funds.
The President and Congress have already taken commendable action through the Supplemental
Appropriations Act, 2009 (P.L. 111-32), to provide fnancial support for eforts to control the current
2009-H1N1 pandemic by securing emergency response funds and allocating a substantial portion to
support mitigation methods, as described in Chapter 1. We presume that the Ofce of Management
and Budget will continue to closely monitor Federal expenses for infuenza mitigation, so that additional
emergency appropriations can be sought if necessary.
Using these funds, the Federal Government also has taken an important step to help already overbur-
dened state and local public health organizations respond to the pandemic by providing $350 million
from the emergency appropriation, through DHHS, to state and local governments and hospitals.
It is likely that additional funds will be required for various activities. In Chapter 4 we discuss the impor-
tance of enhancing surveillance systems—for example, to enlarge the capacity to diagnose 2009-H1N1
infection. In many states, public health laboratories are the only facilities ofering this testing. If such
laboratories are overwhelmed, key decisions about prophylaxis, treatment, and school closure may be
delayed by diagnostic uncertainty. More funds would likely be required for such laboratory expansions.
Lowering Barriers to Hospital Care
Hospitals may face regulatory and economic disincentives to care for patients acutely ill with infuenza.
In large outbreaks, hospitals—and in particular their pediatric wards, emergency departments, and
ICUs—may quickly become overwhelmed. This may lead to the need for alternative care sites such
as schools, hotels, stadiums, recreation centers, and churches. In addition, as we have already seen in
other developed countries coping with infuenza outbreaks this year, hospitals may need to reduce
the number of beds available for elective surgeries and other activities that provide a major source of
revenue. Further, overcrowded ICUs may require hospitals to transport some patients outside of the
immediate area. Because rates of hospitalization for 2009-H1N1 are highest in children, hospitals can
also anticipate needing more pediatric equipment than is typically available.
RECOMMENDATION 6-1: DHHS MONITORING
We recommend that DHHS monitor the financial situation of state and local governments to
determine whether they have su?cient ?nancial resources and personnel to carry out necessary
surveillance (including monitoring trends in respiratory virus activity and at least a minimal level
of viral surveillance) and to respond to the public health situation, which may vary from one juris-
diction to another.
48 48 49
VI. LOWERI NG FI NANCIAL AND REGULATORY BARRI ERS TO EFFECTIVE RESPONSE
To respond appropriately to these pressures, hospitals may require relief from certain regulatory provi-
sions that normally limit the number of severely sick patients who can be seen; require that all patients
be subjected to routine tests or procedures that may be irrelevant during a pandemic; or prevent the
rapid triaging of patients who are only mildly ill.
Two actions typically are necessary for these usual assurances to be waived. First, the DHHS Secretary
must declare a Public Health Emergency. When this action is taken, the Secretary can gain access to a
special fund called the Public Health Emergency Fund. (We note, however, that this access is currently
since Congress has not appropriated any public monies to the Fund.) Second, the President must make
a declaration under the Staford Act or National Emergencies Act. When both of these actions have been
taken, DHHS can waive or modify a number of administrative requirements of the Emergency Medical
Treatment and Active Labor Act (EMTALA), Medicare, Medicaid, and the Children’s Health Insurance
Program (CHIP). For example, the Secretary can waive conditions of participation or certifcation require-
ments, allowing health providers to ofer care even if not licensed by their state to do so. In addition, an
“1135 waiver” of EMATLA could enhance the ability of hospitals to respond to a pandemic by allowing
• Diversion of less ill patients from emergency departments to alternative care sites for triage and
treatment without being subject to penalties and fnes;
• Provision of emergency care for patients regardless of their ability to pay; and
• Earlier care of patients in emergency departments, by eliminating the requirement for a medical
screening exam before evaluation by a health provider.
During the spring 2009-H1N1 outbreak, a Public Health Emergency was declared nationwide but the
Staford Act was not invoked. Because both actions are required for DHHS to issue an 1135 waiver, hos-
pitals were not authorized to divert individuals to of-site alternate care sites, even if their emergency
departments were overwhelmed. In addition, the Public Health Emergency Fund, though authorized,
is currently unfunded.
In addition to regulatory barriers, hospitals face signifcant fnancial disincentives for vigorous planning
and implementation of appropriate disaster operations. For example, a resurgence of 2009-H1N1 may
fll large numbers of hospital beds with individuals who are in need of expensive care but are either
RECOMMENDATION 6-2: PUBLIC HEALTH EMERGENCY
We recommend that if the Secretary of DHHS declares a Public Health Emergency, the President
consider issuing a Sta?ord Act declaration so that hospitals can more e?ectively triage and treat
patients.
Alternatively, the Administration could ask Congress to amend the Social Security Act preemptively
so that the ability to issue 1135 waivers is linked automatically to the declaration of a Public Health
Emergency.
In addition, we recommend that Congress provide funding for the Public Health Emergency Fund.
50 50
REPORT TO THE PRESI DENT ON U. S. PREPARATI ONS FOR 2009-H1N1 I NFLUENZA
51
uninsured or have insurance that will reimburse the hospital at unfavorable rates. Moreover, a 2009-
H1N1 resurgence could preoccupy hospital personnel; trigger expensive contagion control procedures;
and force the postponement of more proftable cases or their diversion to other providers. All of these
factors can have a detrimental efect on hospital fnances. Hospitals also may need to rely upon alterna-
tive care sites and standards, which may not be subject to the usual reimbursement rules, raising the
potential for non-reimbursed care.
Non-medical Mitigation Activities
A key element in mitigating the spread of an epidemic is compliance with social distancing measures—
for example, staying home from work or school or avoiding public gatherings such as concerts or
sporting events when ill. However, compliance is unlikely when economic or other disincentives punish
individuals for these behaviors. It is critical that appropriate Federal ofcials take the lead in identifying
these disincentives and removing or minimizing them. Since immunizing large segments of the popula-
tion likely cannot be completed before late November or early December, the use of social mitigation
measures may represent the most efective means for reducing transmission of virus in the fall when it
is spreading most efciently.
Because crowding in schools is extreme and prolonged and because the risks of infection with 2009-
H1N1 to the relevant age groups are high, special consideration should be given to ways to encourage
potentially infectious students to remain at home rather than attend school.
RECOMMENDATION 6-3: EXAMINATIONS AND REIMBURSEMENT
We recommend that DHHS’s Centers for Medicaid and Medicare Services (CMS), which reimburse
hospitals for care provided through Medicare, Medicaid, and the Children’s Health Insurance
Program (CHIP), examine the ?nancial implications for hospitals of actions they might take in
responding to the pandemic. Such an analysis should examine the economic implications of
hospital reimbursement for the care of 2009-H1N1 patients in conventional and alternative care
sites, while also considering the ?nancial losses that hospitals might incur by deferring elective
procedures.
50 50 51
VI. LOWERI NG FI NANCIAL AND REGULATORY BARRI ERS TO EFFECTIVE RESPONSE
Individuals sick with 2009-H1N1, and those who need to care for afected family members, face a loss of
income or employment if they stay home from work. Similarly, holders of tickets for travel or sporting
events face potentially substantial economic losses from nonrefundable ticket expenses. Such barri-
ers may make them less willing to participate in social mitigation strategies that the government may
propose. Both government and private organizations may need to take actions to lower such barriers.
For example, the government can encourage businesses to promulgate more fexible sick leave and
ticket reimbursement policies in response to an outbreak of infuenza.
RECOMMENDATION 6-4: COMMUNICATING WITH SCHOOLS
We recommend that the Department of Education, working with the Department of Health and
Human Services and the Department of Labor, meet with representatives from state and local
school districts in August 2009 to identify the ?nancial needs and regulatory barriers that would
discourage decisions to close schools when public health conditions warrant such closures and to
consider actions that Federal, state, and local authorities could take to reduce those disincentives.
Examples of possible actions include waivers on the minimum required number of school days,
meals for children who are in school meal programs, access to online or “drop o?” educational
activities and programs, and childcare options for parents who work. Because actions might need
to be taken rapidly, it is important that these plans be well publicized to institutional actors, includ-
ing school principals.
We also recommend that the Department of Education develop clear and e?ective 2009-H1N1
contingency plans by October 1, 2009, and designate a health professional who is familiar with
public schools to provide guidance to school districts.
RECOMMENDATION 6-5: COMMUNICATING WITH BUSINESSES
We recommend that the Domestic Policy Council and the Assistant to the President for
Intergovernmental A?airs and Public Liaison meet with leaders of small businesses, industry,
and labor to identify mechanisms that might encourage individuals to stay home while sick—for
example, by alleviating economic losses employees might otherwise sustain from such responsible
actions. These leaders could identify actions the President might advocate to reduce barriers to
social mitigation actions, such as more liberal worker leave policies, ?exible union rules, and refund-
able tickets for airlines, trains, or buses or for concerts, athletic, or other public events.
We also recommend that the Federal Government immediately initiate policies that, in the event
of increasing spread of in?uenza virus, would allow Federal employees with respiratory illness (or
those caring for a child with same) to stay at home without ?nancial penalty.
53
53
VII. Improving Communications
Introduction
One of the lessons of prior infuenza epidemics is the importance of timely, clear, and efective commu-
nication among government ofcials, medical professionals, and the public. In spring 2009, CDC reacted
well in terms of communications with both professionals and the public. CDC maintained a steady fow
of up-to-date information and admitted the limitations of its knowledge as the situation evolved.
During the expected fall resurgence of 2009-H1N1, communication will again pose a formidable chal-
lenge for ofcials and others trying to manage the pandemic. But the communications challenge will
be fundamentally diferent than in the spring, when the epidemic arrived unexpectedly and CDC’s
stance was necessarily reactive. For the anticipated fall resurgence, CDC’s approach must be pro-active.
The fundamental difculties are that (i) the messages will be more numerous and more complex and
(ii) the precise content of the messages is uncertain for now and will depend on the specifcs of how
the public health situation unfolds. Nonetheless, the existing data give planners enough knowledge to
envision diferent scenarios of how events could play out (see Chapter 3). This makes it possible—and
we believe imperative—to have carefully considered communication plans prepared in advance, ready
for many contingencies.
For instance, if only limited supplies of vaccine are available initially, it is likely that diverse groups at
particularly high risk of severe disease will be prioritized for vaccination and potentially for antiviral
medications, as described in Chapter 5. Communication plans need to be developed to reach individuals
CHAPTER SUMMARY
Communication will be one of the most formidable challenges in managing the anticipated resurgence
of 2009-H1N1 this fall, due to the rapidly evolving nature of the outbreak, the number and complexity
of the messages, and the myriad channels through which the public will be receiving information.
CDC is the lead Federal agency for communication with state and local health departments, health care
providers, and the general public. CDC’s communications plans for the ?rst two groups appear to be
proceeding well, although we o?er some suggestions.
Concerning communications with the general public, the Working Group believes it would be desirable
to have well-developed communications plans that cover a variety of contingencies and is concerned
that the planning for such communications may be somewhat behind schedule.
We recommend that CDC expand its e?orts to develop a full range of communication plans for vari-
ous contingencies. In view of the fact that 2009-H1N1 particularly a?ects young people, these plans
would ideally include outreach not only to traditional media but also new media and social networking
channels.
54 54
REPORT TO THE PRESI DENT ON U. S. PREPARATI ONS FOR 2009-H1N1 I NFLUENZA
55
who belong to the designated high-risk groups and their health care providers—for example, through
patient advocacy groups, provider organizations, radio and TV spots, and social networking. The content
and format of the outreach materials should be considered in advance. Contacts should be made in
advance with leaders of relevant media or patient organizations so they can prime their networks for
rapid delivery of the relevant messages.
CDC clearly is the lead Federal agency for communication with three constituencies: (1) state and local
health departments, (2) health care providers, and (3) the general public. The Working Group reviewed
CDC’s communications plans in these areas for the anticipated epidemic this fall.
The Working Group expressed confidence in CDC’s communications plans with the public health
departments and health care providers; the Group’s primary suggestion for communication with these
groups is that CDC work to harmonize recommendations with relevant medical societies. In contrast,
the Working Group expressed some concern that CDC’s plans for public communications appear to be
inadequately developed at present and somewhat behind schedule. In addition, the Group was con-
cerned that CDC had not adequately planned to engage the full range of communications channels.
Because 2009-H1N1 will particularly afect young people, there is an opportunity and need to engage
new media and social networking channels.
Communication with State and Local Health Departments
CDC deserves high marks for its coordination of information fow to and from state and local health
departments during the spring 2009-H1N1 outbreak. It clearly articulated what was known and
unknown, provided useful updates in real time, and assimilated large amounts of regional data to pro-
vide an evolving picture of what was happening on the national level.
In Chapters 3 and 4, the Working Group recommends that CDC (i) defne and disseminate specifc sce-
narios concerning the pandemic and (ii) improve various surveillance systems. These steps should feed
into and enhance communications with state and local health departments. In addition, the Working
Group urges CDC to prepare materials to help Federal, state, and local health ofcials deal with potential
MAIN RECOMMENDATION (CHAPTER 7)
We recommend that CDC accelerate its planning e?orts for public communications. Given the
limited time frame and the wide range of uncertainties, we recommend that CDC systematically
identify the full range of messages that may need to be communicated, particularly messages
about actions that may be required of the public under various scenarios; prepare well-developed
plans for these communications; and begin outreach to relevant communications channels as soon
as possible.
We also recommend that CDC engage not only traditional media, with which CDC has deep experi-
ence, but also new media and social networking channels, especially given the propensity of the
2009-H1N1 virus to infect young people. For this purpose we recommend that CDC draw heavily
on the expertise of the o?ce of the Federal Chief Technology O?cer.
54 54 55
VI I. IMPROVI NG COMMUNI CATI ONS
misunderstandings relating to adverse events. It is certain that, by chance, some adverse events will occur
following vaccination (e.g., on any given day, some elderly individuals will die and pregnant women
will miscarry). It is important that CDC has well-developed materials completed in advance to set such
events in context, as well as to help experts recognize truly unexpected occurrences.
Communication with Health Care Providers
Medical professionals rightly regard CDC as the authoritative source for public health information,
especially during emerging epidemics. In general, CDC has discharged this function well during the
present crisis. However, there have been several instances in which its recommendations have been
controversial—particularly those regarding hospital infection control, which have sometimes been
based on hypothetical concerns rather than epidemiological data. Some of these recommendations
generated controversy and even outright opposition from caregivers. For example, CDC’s recommenda-
tion for use of N95 respirators by those caring for hospitalized 2009-H1N1 patients is at variance with the
views of several other expert bodies. Such conficts can generate confusion and anxiety at many levels
in the hospital workplace, impair efective compliance with proper infection control, and undermine
physician confdence in CDC and public confdence in local infection control measures at a time when
confdence levels need to be maximized.
Communication with the General Public
CDC and other Federal agencies must communicate with the public in two broad areas: (1) medical
interventions (vaccines and antiviral medications); and (2) non-medical, community-based interven-
tions (e.g., social distancing and isolation of sick individuals). The Working Group has some concerns
with the communications plans in both areas. Since they have diferent origins, the two sets of concerns
are considered separately.
Medical Interventions: CDC has a long history educating the public about seasonal infuenza and the
vaccine that provides protection against it. Despite this experience, eforts to prepare the infuenza
public information campaign for fall 2009 have been hampered by several factors, including:
• the need to divert staf to communicate urgently with the public regarding the spring 2009-
H1N1 outbreak
• uncertainties about the 2009-H1N1 vaccine (including how much will be available, on what
schedule it will arrive, how many doses may be needed, and who should receive vaccination);
and
RECOMMENDATION 7-1: HARMONIZE RECOMMENDATIONS
We recommend that CDC work to harmonize its recommendations with those of relevant profes-
sional societies prior to their public release. As discussed in Chapter 5, relevant societies include the
Society for Healthcare Epidemiology of America (SHEA), the Infectious Diseases Society of America
(IDSA), and, where recommendations concern children, the American Academy of Pediatrics (AAP).
56 56
REPORT TO THE PRESI DENT ON U. S. PREPARATI ONS FOR 2009-H1N1 I NFLUENZA
57
• the inherent complexity of a public health message that encompasses two vaccines for two
diferent types of infuenza (2009-H1N1 and a seasonal strain), especially if two doses of 2009-
H1N1 vaccine are required.
For these and other reasons there is much communications work ahead, and very little time to complete
it. CDC’s information campaign will need to:
• refocus the public’s attention on 2009-H1N1 infuenza, which has largely receded from public
consciousness (due in part to the media’s sporadic attention to the topic), and its relationship
to seasonal infuenza;
• keep the public updated about the severity of the epidemic;
• educate the public about when to seek medical attention and where to do so;
• inform the public about personal and community-wide action that may be necessary this fall,
and steps people can take to be prepared;
• reach groups at particularly high risk; and
• respond efectively to unexpected events, such as reports of adverse events that occur following
(but not necessarily because of ) vaccination.
To accomplish these missions, it is critical that CDC have well-developed public communications plans
that can be launched rapidly. The planning for various contingencies should be completed now, before
all the relevant information is available. Contacts with various media should be established soon, and
messages and materials should be developed and tested.
We particularly encourage CDC to work with new media and social networking channels. Beyond simply
transmitting CDC’s own messages, we believe there are opportunities to engage and encourage the
creativity of the social networking community to create content and collect information. Members of
the Working Group were impressed by a recent paper by researchers at Google and CDC demonstrating
that an analysis of Google searches related to infuenza-like symptoms was able to identify outbreaks
earlier than conventional surveillance systems. Examples could include: 1) websites with information
about initial self-diagnosis and treatment, up-to-date information about the epidemic, and perhaps
even ways to share personal information that could help inform national surveillance; 2) mobile phone
“apps” with similar content; 3) videos that convey messages in unusual ways; and 4) Facebook quizzes
on infuenza, shared among friends. In support of eforts to fght the infuenza virus, we advise the use
of communications tools designed to facilitate their “going viral.” Such tools are more likely to be created
by members of the public than by the government. However, it may be possible to encourage such
eforts through contests and other mechanisms.
56 56 57
VI I. IMPROVI NG COMMUNI CATI ONS
Non-medical Interventions: Compared to communications about medical interventions, communica-
tions about social actions to mitigate spread of the infuenza virus can be crafted in relatively fnished
form despite uncertainties about details of the epidemic. Public understanding about such personal
measures and their public health value are particularly important given the likelihood that vaccine will
not be available as rapidly as desirable. The Working Group expressed some concern that public com-
munications plans for such measures appear to be incompletely developed.
Fundamentally, there are two main categories of personal actions to mitigate viral spread, hand hygiene
awareness and individual eforts at social distancing, which can be summarized in two simple messages:
“Keep your hands clean” and “Stay home when you’re sick.” Although these messages are simple, the
educational campaign is difcult because it involves persuading people to change established pat-
terns of behavior and requires broad adoption to be successful. Campaigns to encourage these actions
should strive for clarity and simplicity; use diverse and complementary channels of communication;
and incorporate thoughtful policies to mitigate barriers to compliance (see Chapter 7). Importantly,
such campaigns will need to educate the public about why the measures are needed as well as how to
comply with them.
Hand hygiene awareness is more than just hand washing. It includes minimizing contact of hands with
respiratory secretions—by coughing into a sleeve rather than a hand, for example. Communication
channels that can transmit graphic visual images (e.g., television and Internet) are likely to be the most
efective. The public already has accepted media ads involving more sensitive bodily functions, and
major advertising agencies know how to craft efective and acceptable messages in this regard. New
media and social networking expertise may also be efective here.
RECOMMENDATION 7-2: CDC COMMUNICATION EXPANSION
We recommend that CDC expand its e?orts to develop a robust communications plan covering the
full range of potential public messages about medical and non-medical interventions. We strongly
suggest that communications e?orts be launched prior to September 1.
A. With respect to traditional media, we suggest that CDC reach out to major communication
channels (e.g., editorial boards and medical reporters at newspapers, TV and radio stations,
and magazines) to inform them about issues, to interest them in running stories to promote
awareness, and to maintain connections that will facilitate communication when unfolding
events demand rapid responses.
B. With respect to new media and social networking, we suggest that CDC reach out to key
companies (e.g., Facebook, Twitter, Google, Apple) and other innovative entities and indi-
viduals (those who maintain prominent websites and blogs related to health in general
and in?uenza in particular). In this outreach, CDC could bene?t by working closely with the
Federal Chief Technology O?cer.
C. In addition, we urge CDC to expand its capacity to develop rapid responses to misinformation
appearing in traditional media and on the Internet
58 58
REPORT TO THE PRESI DENT ON U. S. PREPARATI ONS FOR 2009-H1N1 I NFLUENZA
Social distancing campaigns, especially those that go well beyond the simple notion of remaining
isolated, generally at home, when ill, must enlist the participation of the general public to be efective.
Workers and students will need to know when to stay home and for how long; they will also need guid-
ance about proper infection control in the home. When asking the public to eschew activities that involve
crowds at sporting events, concerts, transportation centers, shopping areas, and other gathering places,
the messages will need to explain the rationale for such changes in behavior and provide an estimate
of the length of time the recommendations will be in place. All channels are useful and eforts should
be made to enlist the most efective communicators (e.g., celebrities) to deliver the relevant messages.
Such campaigns also need to enlist the support of those responsible for the venues in which suscep-
tible and infected people are likely to congregate (e.g., employers, school and university administrators,
church leaders, sports leagues, and rock concert promoters). Now is the time for the CDC to establish
communication channels with corporate human resource professionals, school ofcials, and others to
inform them about the public health issues surrounding 2009-H1N1 and to help them understand that
allowing sick individuals to stay home is in their organizations’ best interest, as it will minimize large-scale
absenteeism. Universities may require special guidance about infection control in dormitory settings.
RECOMMENDATION 7-3: CDC COMMUNICATION QUICK LAUNCH
We recommend that CDC rapidly develop and launch its communications plan concerning personal
non-medical interventions.
In particular, we suggest that CDC: a) immediately hire a major advertising organization to help
craft ads for non-medical interventions, targeted at various audiences (e.g., employers, the general
public, school administrators) and b) work with the Federal Chief Technology O?cer to engage new
media and social networking channels in support of these goals.
58 58
VIII. Planning for More Efective Future
Strategies Against Infuenza
The current situation with 2009-H1N1 has highlighted critical shortcomings in public response systems
to the emergence of new infuenza strains and more generally to outbreaks of infectious diseases. Given
the emergence of multiple biological threats during the past decade (including SARS, avian fu, 2009-
H1N1, and at least one instance of bioterrorism), it is likely that we will face continued challenges from
infectious diseases. While there has been substantial progress in preparedness over the past several
years, there is much work that needs to be rapidly completed. Even while we are dealing with 2009-
H1N1, the Federal Government should take specifc steps to ensure our preparedness for the next event.
Some of these steps will also aid our national response to seasonal infuenza.
CHAPTER SUMMARY
The current threat from 2009-H1N1 has highlighted critical shortcomings in public response systems to
the emergence of new in?uenza strains and more generally to outbreaks of infectious diseases.
There are important opportunities to increase national preparedness against future epidemics. These
include steps to improve: the design, production, and use of vaccines; the range of antiviral drugs; the
availability of rapid diagnostics; and the breadth of health surveillance systems. Some of the steps can
be achieved quickly (within the next year), while some will take longer.
We propose that the National Security Council coordinate a government-wide e?ort to increase national
preparedness in response to the lessons learned from the 2009-H1N1 outbreak and provide periodic
updates to the President on national progress toward these goals.
MAIN RECOMMENDATION (CHAPTER 8)
There are important opportunities to increase national preparedness against future epidemics.
These include steps to improve: the production and use of vaccines; the range of antiviral drugs;
the availability of rapid diagnostics; and the breadth of health surveillance systems. Some of the
steps can be achieved quickly (within the next year), while some will take longer.
We propose that the National Security Council coordinate a government-wide e?ort to increase
national preparedness speci?cally in response to the lessons learned from the 2009-H1N1 outbreak
and provide periodic progress updates to the President on national progress toward these goals.
59
60 60
REPORT TO THE PRESI DENT ON U. S. PREPARATI ONS FOR 2009-H1N1 I NFLUENZA
61
Accelerate Speed and Increase Yield and Efectiveness of Vaccine Production
Current methods for producing infuenza vaccine are too slow, cumbersome, and inefcient given the
challenge of a rapidly spreading infuenza virus epidemic. The predominant design and technologies
used to produce infuenza vaccines have not fundamentally changed in several decades: Viruses are
grown in embryonated chicken eggs, then harvested and processed to create the vaccine. The process
typically takes 6 to 9 months, from initial steps to develop a “seed” vaccine virus to completed product.
Moreover, when a novel virus is isolated late in an infuenza season (as was the case with 2009-H1N1), it
is difcult or impossible to prepare and test vaccine before the resurgence in the next infuenza season
(which, moreover, tends to occur early for novel viruses).
Recently, there has been progress on two new approaches for vaccine production:
• Cell-based vaccines, in which viruses are grown in cultured cells rather than eggs. This method
obviates the need for large quantities of embryonated eggs and potentially permits increased
levels of production beyond those currently achievable. The method, however, does not sub-
stantially shorten the timeline between identifcation of the virus strains to be included in the
vaccine and the vaccine’s availability. This approach is currently being used by several companies
to produce candidate 2009-H1N1 vaccines, but such cell-based vaccines have not yet achieved
licensure in the United States.
• Recombinant vaccines, in which molecular biology techniques are used to clone infuenza virus
vaccine proteins into various expression systems. There are several such methods currently
under development and evaluation, including some by industry and by the Defense Advanced
Research Projects Administration (DARPA). This approach has potential to shorten the time
between vaccine strain identifcation and fnal vaccine production to as little as a few months, as
well as provide a large increase in vaccine production volume. However, considerable additional
development and clinical work is required to frmly prove the efectiveness of these technolo-
gies and to provide the necessary data for eventual licensure.
In addition to the pursuit of these approaches, greater eforts should be made to take advantage of
modern understanding of infuenza virus epitopes (the sites on proteins that induce immunity), three-
dimensional protein structure, the mechanisms of immune recognition, and the sites on infuenza viral
proteins at which the most signifcant variation is observed. By harnessing such information to new
methods for protein design and genetic engineering, it is possible to envision infuenza vaccines of the
future that provide longer-lasting immunity against a wider range of viral isolates. Such vaccines might
be produced efciently as proteins in a variety of expression systems or as attenuated viruses grown in
cell culture systems.
In addition to improving vaccine design and technology for vaccine production, eforts need to be
undertaken to assess and license adjuvants that are compatible with infuenza vaccines. Adjuvants can
greatly increase the potency of vaccines and thereby extend the number of people who can be vac-
cinated with a given supply. None is currently approved for use with infuenza vaccines in the United
States, although adjuvants have been approved and are being used with infuenza vaccines in Europe.
60 60 61
VI I I. PLANNI NG FOR MORE EFFECTIVE FUTURE STRATEGI ES AGAI NST I NFLUENZA
The use of adjuvants thus currently requires Emergency Use Authorization (EUA), a step that regulators
may be reluctant to take. Although clinical trials of 2009-H1N1 vaccines with adjuvants are planned
for the coming months, it will not be feasible to obtain standard FDA approval in time for use this fall.
Nonetheless, it would be desirable to achieve licensure of the currently available adjuvants for use in
the near future. Beyond existing adjuvants, recent advances in immunology point the way to powerful
new types of adjuvants, the pursuit of which may ultimately enhance the efcacy and lower the costs
of infuenza vaccines.
Even while these new products are being developed and tested, it is important that the Federal
Government ensure that capacity is maintained for infuenza production by traditional approaches
for the foreseeable future. Capacity was increased in preparation for a potential avian infuenza (H5N1)
pandemic and is thus available for response to the current 2009-H1N1 pandemic. However, if such high
capacity levels are not needed over the coming years, companies may reduce production capacity to
bring it more in line with the lower anticipated demand for seasonal infuenza vaccine. The prospect of
such reduced capacity, which would limit the ability to respond to novel infuenza pandemics, provides
further incentive for developing more efcient means of production.
Facilitate Development of Additional Antiviral Drugs
There is an urgent need to expand the available range of antiviral drugs that can be used for prophy-
laxis or treatment of infuenza. Currently, there is only a handful of antiviral drugs and only two that are
licensed and expected to be efective against 2009-H1N1: the oral drug oseltamivir (Tamifu) and the
inhaled drug zanamivir (Relenza). There currently are no antiviral drugs approved for intravenous use
to treat seriously ill patients—although one new drug (peramivir) and the two existing drugs are also
being tested in intravenous formulations.
Moreover, these options may narrow further as infuenza viruses develop resistance to these drugs. Most
seasonal infuenza has already developed resistance to oseltamivir, and a handful of cases of oseltamivir-
resistance have been reported among 2009-H1N1 isolates (nine as of the end of July), indicating that
this virus can also develop resistance.
RECOMMENDATION 8-1: VACCINES
We recommend that the Federal Government work to:
A. ensure that in?uenza virus vaccines produced in cell culture, as well as vaccines formulated
with the currently available adjuvants, proceed expeditiously through the FDA regulatory
process for licensure;
B. fully support and encourage development of recombinant in?uenza vaccines and provide
a clear regulatory path for licensure;
C. encourage and support the development of new adjuvants; and
D. ensure that adequate manufacturing capacity is maintained for production of in?uenza
vaccine using currently approved methods.
62 62
REPORT TO THE PRESI DENT ON U. S. PREPARATI ONS FOR 2009-H1N1 I NFLUENZA
63
It will be important to develop new classes of drugs to expand the armamentarium. A particularly
promising new approach is to develop drugs that block the virus by acting on a human cellular function
(‘host target’), rather than a viral protein (‘pathogen target’), because such drugs should be less likely
to encounter acquired resistance.
Facilitate Development of Rapid Point-of-Care Diagnostics
Infuenza can be difcult to diagnose because similar symptoms can be caused by agents other than
the infuenza virus, including adenovirus, respiratory syncytial virus, rhinovirus, parainfuenza viruses,
mycoplasma, and other agents. Moreover, it is important to be able to distinguish among diferent
infuenza strains, such as seasonal infuenza and 2009-H1N1 infuenza, because resistance patterns and
drug-of-choice may vary. Defnitive diagnosis can be important to guide medical decisions for individual
patients and to permit accurate epidemiological surveillance.
Accurate diagnostic tests for distinguishing diferent infuenza strains are available, but they (i) require
several hours to days to provide results, (ii) are not readily deployed in physicians’ offices or even
hospital settings, (iii) have limited sensitivity, and (iv) are available in only limited capacity that will be
overwhelmed in a serious pandemic. The Nation needs the capability to perform rapid, simple, point-
of-care diagnostics. The competence and capability to develop such diagnostics exists in many places,
including CDC, NIH, DARPA and DHS, and the importance of this issue warrants strong, mission-driven
coordination of eforts across these agencies.
Improve Medical Surveillance
As described in detail in Chapter 4, there are substantial gaps in the Nation’s medical surveillance systems
that limit our ability to obtain accurate, real-time information about epidemics. Some of these gaps
can be closed quickly, but a more systematic, long-term efort to eliminate them would substantially
improve national preparedness.
RECOMMENDATION 8-2: ANTIVIRALS
We recommend that the Federal Government work to:
A. expedite the licensure of intravenous formulations of antivirals, and
B. stimulate the development of new in?uenza drugs that have novel mechanisms of action in
order to reduce the potential for antiviral resistance.
RECOMMENDATION 8-3: DIAGNOSTICS
We recommend that the Federal Government ensure the creation of a national capability to
develop, on a rapid basis, accurate point-of-care diagnostics for any novel in?uenza virus. Such an
e?ort might be led by DHHS, in coordination with DOD and DHS.
62 62 63
VI I I. PLANNI NG FOR MORE EFFECTIVE FUTURE STRATEGI ES AGAI NST I NFLUENZA
Surveillance preparedness to date has emphasized early detection of an outbreak (e.g. early knowledge
of an anthrax attack), while underplaying the role of ongoing surveillance once an outbreak of infectious
disease is underway. In the case of infuenza, while the United States has systems to provide epidemio-
logical and virological data on infuenza, we are still not able to make confdent estimates each week of
the number of people who are infected, seek medical care, are hospitalized, or die of infuenza. Notably,
the UK measures and publicizes many of these statistics weekly.
Such “situational awareness” is essential for an evaluation of the characteristics of the pandemic, efec-
tive allocation of resources to places of greatest need, and appropriate changes in mitigation and other
response strategies over the course of a pandemic. Moreover, the ability to make such estimates would
improve diagnosis and treatment of respiratory infections in general and of infuenza specifcally, both
in normal and pandemic years, and would provide a basis for greater cost-efectiveness. The estimates
could be obtained with a nationally representative electronic reporting system for primary care and
emergency visits, hospitalizations, ICU admissions, and deaths for defned respiratory infections, com-
bined with viral testing of a representative subset of these individuals. This would permit public health
departments to assess the contribution of various viruses to the disease burden at each level.
A second key shortcoming in our preparedness is the lack of a rapid system for assembling detailed
clinical data on severe cases that can provide a statistically adequate and continuously updated picture
of risk groups and clinical course. Current systems rely on non-standardized reports from local health
departments and on peer-reviewed case series, which are slow to become public.
As the current pandemic continues to unfold, other key gaps in our situational awareness will likely
emerge. These revelations should be a basis for improving public health information systems.
RECOMMENDATION 8-4: MEDICAL SURVEILLANCE
We recommend that CDC take steps to improve surveillance systems for use in epidemics. This
could include:
A. working with state and local authorities to establish a dense, geographically diverse, nation-
wide, real-time surveillance network that can estimate population rates of primary care
and emergency visits, hospitalizations, ICU admissions, deaths from de?ned respiratory
syndromes, and (in a random sample of cases) presence of speci?c viruses.
B. working with a set of large hospitals, at least one in each of the top 30 metropolitan areas
together with the respective local authorities, to establish a system for standardized local
and national reporting of demographic, laboratory, and clinical characteristics of hospital-
ized and more severe cases of de?ned syndromes, including but not limited to in?uenza.
We also recommend that after the current pandemic DHHS undertake a comprehensive review of
unmet needs for data, possible solutions to the problems of providing such data under emergency
conditions, and the costs of building the necessary surveillance systems.
64 64
REPORT TO THE PRESI DENT ON U. S. PREPARATI ONS FOR 2009-H1N1 I NFLUENZA
65
Enhance Animal Surveillance Measures
Birds and pigs serve as critical intermediate hosts in the evolution of infuenza viruses, including the
current 2009-H1N1 virus. Methods for monitoring infuenza viruses in swine and turkeys are powerful
tools for following the appearance, spread, and evolution of viruses, and such surveillance would be
valuable for both human public health and agriculture. Currently the United States lacks a reliable system
for doing this, but a NIH-funded surveillance program of apparently healthy pigs at a slaughterhouse in
Hong Kong has established the benefts of such a system.
RECOMMENDATION 8-5: USDA AND CDC COLLABORATION
We recommend that USDA and CDC collaborate to develop a cooperative program of human and
animal public health that includes:
A. prospective virological and serological surveillance of swine and turkeys, and the workers
exposed to them, at permanent sites, to serve as an early warning system of potentially
pandemic in?uenza viruses of humans, swine, and turkeys.
B. expanded sharing of in?uenza viruses, viral sequence information, and reagents.
64 64 65
References
Australian Government, Department of Health and Aging. Update bulletins for Pandemic (H1N1)
2009 for 27 July to 2 August 2009. Available at: www.healthemergency.gov.au/internet/heal-
themergency/publishing.nsf/Content/updates-2August09.htm).
Beveridge WIB. Infuenza: The Last Great Plague. London: Heinemann, 1977.
Breman J, Hayner N. Guillain-Barre Syndrome and its Relationship to Swine Infuenza Vaccination in
Michigan, 1976-1977, American Journal of Epidemiology 1994; 119(6): 880-889.
Bootsma MCJ, Ferguson NM. The efect of public health measures on the 1918-19 infuenza pandemic
in U.S. cities. Proceedings of the National Academy of Sciences 2007; 104(18):7588-93.
Department of Homeland Security. Homeland Security Council. May 2006. National Strategy for
Pandemic Infuenza: Implementation Plan. Available at:
www.pandemicfu.gov/plan/federal/pandemic-infuenza-implementation.pdf
Dowdle WR. “Infuenza: Epidemic Patterns and Antigenic Variation.” In Selby P, (ed.). Infuenza: Virus,
Vaccine and Strategy. New York and London: Academic Press, 1976, pp. 17-21.
Ginsberg J, Mohebbi M, Patel RS, Brammer L, Smolinski M, Brillant L. Detecting infuenza epidemics
using search engine query data. Nature November 19, 2008; 457:1012-1014.
Hatchett RJ, Mecher CE, Lipsitch M. Public health interventions and epidemic intensity dur
ing the 1918-19 infuenza pandemic. Proceedings of the National Academy of Sciences 2007;
104(18):7582-7587.
Lipsitch M, Hayden FG, Cowling B, Leung GM, How to maintain surveillance for novel infuenza A
H1N1 when there are too many cases to count. Lancet in press 2009.
Markel H, Lipman HB, Navarro A, Sloan A, Michalsen JR, Stern AM, Cetron M. Nonpharmaceutical
interventions implemented by US cities during the 1918-19-1919 infuenza pandemic.
Journal of the American Medical Association 2007; 298:644-654.
Meltzer M, Cox N, Fukuda K. The Economic Impact of Pandemic Infuenza in the United States:
Priorities for Intervention. Emerging Infectious Diseases 1999; 5(5): 659-671.
Millar, J, Refections on the 1976 swine fu vaccination program. Emerging Infectious Diseases 2006 at
http://www.cdc.gov/ncidod/eid/vol12no01/05-1007.htm.
Molinari N, Ortega-Sanchez I, Messonnier M, Thompson W, Wortley P, Weintraub E, Bridges C. The
annual impact of seasonal infuenza in the US: Measuring disease burden and costs. Vaccine
2007; 25:5086-5096.
Morens DM, Taubenberger JK, Fauci AS. The persistent legacy of the 1918-19 infuenza virus.
New England Journal of Medicine 2009; 361 (3):225-229.
65
66 66 67
Murray CJL, Lopez AD, Chin B, Feehan D, Hill KH. Estimation of potential global pandemic infuenza
mortality on the basis of vital registry data from the 1918-19—20 pandemic: a quantitative
analysis. The Lancet 2006; 368 (9554):2211-2218.
Osborn J (ed.). Infuenza in America, 1918-19-1976. NY: Prodist, 1977.
Palese P, Shaw ML. “Orthomyxoviridae: The Viruses and their Replication.” In: Knipe DM, Howley PM,
et al. (Eds.). Fields Virology, 5th edition. Philadelphia: Lippincott-Raven Press, 2007. pp.
1647-1689.
Swendiman KS, Jones NL. The 2009 Infuenza A(H1N1) Outbreak: Selected Legal Issues. Washington,
DC: Congressional Research Service, Report Number R40560, May 21, 2009.
Wright PF, Neumann G, Kawaoka Y. “Orthomyxoviruses.” In: Knipe DM, Howley PM, et al. (Eds.).
Fields Virology, 5th edition. Philadelphia: Lippincott-Raven Press, 2007. pp. 1691-1729.
Zimmer SM, Burke DS. Historical perspective—emergence of infuenza A (H1N1) viruses.
New England Journal of Medicine 2009; 361(3):279-285.
66 66 67
Acknowledgements
PCAST wishes to express gratitude to the following individuals who contributed in various ways to
the preparation of this report:
Richard Besser, Director, Coordinating Ofce
for Terrorism Preparedness and Emergency
Response, Centers for Disease Control and
Prevention (CDC), Department of Health and
Human Services (HHS)
Guthrie Birkhead, Deputy Commissioner, Ofce
of Public Health, New York State Department of
Health
Debra Birnkrant, Division of Antiviral Products,
Food and Drug Administration (FDA)
Joe Bresee, Branch Chief, Epidemiology and
Prevention, Infuenza Division, CDC, HHS
Michael Callahan, Program Manager, Blue Angel
project, Defense Advanced Research Projects
Agency (DARPA), Department of Defense (DOD)
Martin Cetron, Director for the Division of Global
Migration and Quarantine, CDC, HHS
D.W. Chen, Director, Civil-Military Medicine,
Ofce of the Assistant Secretary of Defense for
Health Afairs, DOD
Ken Cole, Medical Director, Ofce of the Deputy
Assistant to the Secretary of Defense for
Chemical and Biological Defense and Chemical
Demiliatrization, DOD
Jose Diez, Associate Deputy Administrator for
Emergency Management and Diagnostics,
Animal and Plant Health Inspection Service
(APHIS), Department of Agriculture (USDA)
Greg Dworkin, Contributing Editor, Daily Kos;
Founding Editor, Flu Wiki
Anthony Fauci, Director, National Institute of
Allergy and Infectious Diseases (NIAID), National
Institutes of Health (NIH), HHS
Neil Ferguson, Director, Medical Research
College (MRC) Centre for Outbreak Analysis and
Modeling, Imperial College, London
Keith Fontenot, Associate Director, Health
Programs, Ofce of Management and Budget,
The White House
Bruce Gellin, Deputy Assistant Secretary for
Health; Director, National Vaccine Program Ofce;
HHS
Jesse Goodman, Chief Scientist and Acting
Deputy Commissioner, Food and Drug
Administration (FDA)
Dan Hanfing, Special Advisor, Emergency
Preparedness and Response, Inova Health
System, Falls Church, Virginia
Richard Hatchett, Director for Medical
Preparedness Policy, National Security Staf,
The White House
Frederick Hayden, Wellcome Trust
Kathi Hanna, Science Writer
Carole Heilman, Director, Division of
Microbiology and Infectious Diseases, NIAID, NIH,
HHS
Thomas Inglesby, Chief Operating Ofcer and
Deputy Director, University of Pittsburg Medical
Center, Center for Biosecurity
Michael G. Ison, Divisions of Infectious Diseases &
Organ Transplantation, Northwestern University
Dennis Israelski, Clinical Professor of Medicine,
Department of Medicine, Division of Infectious
Diseases and Geographic Medicine, Stanford
University School of Medicine;Vice President
for Global Health, Innovative Support to
Emergencies, Diseases, and Disasters ( InSTEDD)
68 68
Til Jolly, Associate Chief Medical Ofcer for
Medical Readiness, Department of Homeland
Security (DHS)
Lisa Koonin, Senior Advisor, Infuenza
Coordination Unit, CDC
Peter Lammers, Vice President, Vaccines Business
Unit, Glaxo Smith Kline
James Lawler, Director for Medical Preparedness
Policy, National Security Staf, The White House
Nicole Lurie, Assistant Secretary for Preparedness
and Response, HHS
Ben Machielse, Executive Vice President,
Operations, MedImmune
Howard Markel, George E. Wantz Distinguished
Professor of the History of Medicine; Director,
Center for the History of Medicine; Professor
of Pediatrics and Communicable Diseases; The
University of Michigan
Alison McGeer, Professor, Dalla Lana School of
Public Health, Mt. Sinai Hospital, University of
Toronto, Canada
William Modzeleski, Associate Assistant Deputy
Secretary, Ofce of Safe and Drug Free Schools,
U.S. Department of Education
Beth Noveck, US Deputy Chief Technology Ofcer
for Open Government Initiative, Ofce of Science
and Technology Policy (OSTP), The White House
Steve Ostrof, Director, Bureau of Epidemiology,
Pennsylvania Department of Health
Andrew T. Pavia, George and Esther Gross
Presidential Professor; Chief, Division of Pediatric
Infectious Diseases; University of Utah
Rino Rappuoli, Global Head of Vaccines Research,
Novartis
Stephen Redd, Director, Infuenza Coordination
Unit, CDC, HHS
Barbara J. Reynolds, Crisis Communications
Senior Advisor, Ofce of the Director, Centers for
Disease Control and Prevention, HHS
Robin Robinson, Director, Biomedical Advanced
Research & Development Authority (BARDA),
HHS
Lone Simonsen, Research Professor, Department
of Global Health, School of Public Health and
Health Services, George Washington University
Derek Smith, Professor of Infectious Disease
Informatics, Cambridge University, UK; Member,
Virology Department, Erasmus Medical Center,
Netherlands; Senior Fellow, Fogarty International
Center, NIH, HHS
John Treanor, Professor of Medicine, and of
Microbiology and Immunology, School of
Medicine and Dentistry, University of Rochester
doc_263309179.pdf
President’s Council of Advisors on
Science and Technology
August 7, 2009
REPORT TO THE PRESI DENT
ON U. S. PREPAR ATI ONS FOR
2 0 0 9 -H1N1 I NFLUENZA
ii ii iii
About the President’s Council of Advisors on
Science and Technology
The President’s Council of Advisors on Science and Technology (PCAST) is an advisory group of the
nation’s leading scientists and engineers, appointed by the President to augment the science and tech-
nology advice available to him from inside the White House and from cabinet departments and other
Federal agencies. PCAST is consulted about and often makes policy recommendations concerning the
full range of issues where understandings from the domains of science, technology, and innovation
bear potentially on the policy choices before the President. PCAST is administered by the White House
Ofce of Science and Technology Policy (OSTP).
For more information about PCAST, see www.ostp.gov/cs/pcast.
ii ii iii
Members
Rosina Bierbaum
Dean, School of Natural Resources
and Environment
University of Michigan
Christine Cassel
President and CEO
American Board of Internal Medicine
Christopher Chyba
Professor, Astrophysical Sciences and
International Afairs
Director, Program on Science and Global Security
Princeton University
S. James Gates, Jr.
John S. Toll Professor of Physics
Director, Center for String and Particle Theory
University of Maryland, College Park
Shirley Ann Jackson
President
Rensselaer Polytechnic Institute
Richard C. Levin
President
Yale University
Chad Mirkin
Rathmann Professor, Chemistry, Materials
Science and Engineering, Chemical and
Biological Engineering, Biomedical Engineering,
and Medicine
Director, International Institute of
Nanotechnology
Northwestern University
Mario Molina
Professor, Chemistry and Biochemistry
University of California, San Diego
Professor, Center for Atmospheric Sciences at the
Scripps Institution of Oceanography
Director, Mario Molina Center for Energy and
Environment in Mexico City
Ernest J. Moniz
Cecil and Ida Green Professor of Physics and
Engineering Systems
Director, MIT’s Energy Initiative
Massachusetts Institute of Technology
Craig Mundie
Chief Research and Strategy Ofcer
Microsoft Corporation
Ed Penhoet
Director, Alta Partners
Chairman of the Board, Immune Design
Chairman of the Board, Metabolex
William Press
Raymer Professor in Computer Science and
Integrative Biology
University of Texas at Austin
Maxine Savitz
Vice President
National Academy of Engineering
Barbara Schaal
Chilton Professor of Biology
Washington University, St. Louis
Vice President, National Academy of Sciences
Te President’s Council of Advisors on
Science and Technology
Co-Chairs
John P. Holdren
Assistant to the President for
Science and Technology
Director, Ofce of Science
and Technology Policy
Eric Lander
President and Director
Broad Institute of Harvard
and MIT
Harold Varmus
President
Memorial Sloan-Kettering
Cancer Center
iv iv v
Eric Schmidt
Chairman and CEO
Google, Inc.
Daniel Schrag
Sturgis Hooper Professor of Geology
Professor, Environmental Science and
Engineering
Director, Harvard University-wide Center for
Environment
Harvard University
David E. Shaw
Chief Scientist, D. E. Shaw Research
Senior Research Fellow, Center for
Computational Biology and Bioinformatics,
Columbia University
Ahmed Zewail
Linus Pauling Professor of Chemistry and Physics
Director, Physical Biology Center
Professor, Chemistry and Physics
Director, Physical Biology Center
California Institute of Technology
Staf
Deborah Stine
Executive Director, PCAST
Mary Maxon
Deputy Executive Director, PCAST
iv iv v
EXECUTIVE OFFICE OF THE PRESIDENT
PRESIDENT’S COUNCIL OF ADVISORS ON SCIENCE AND TECHNOLOGY
WASHINGTON, D.C. 20502
August 7, 2009
President Barack Obama
The White House
Washington, DC 20502
Dear Mr. President:
We are pleased to transmit to you the report, U.S. Preparations For 2009-H1N1 Infuenza, prepared by your
Council of Advisors on Science and Technology (PCAST). This report examines the strategic issues raised by
the likely resurgence this fall of the novel infuenza virus called 2009-H1N1.
The report reviews the full range of response options for minimizing negative impacts from a fall 2009-H1N1
epidemic and provides an integrated set of recommendations about how to think about hard issues and
key policy decisions regarding the epidemic. The nation’s response to the threat of a fall epidemic involves
decisions by government on a wide range of issues --- medical, scientifc, social, and fnancial. We have tried
to assess these, keeping in mind your interest in having the best available scientifc insights and perspectives
to inform your thinking about the nation’s response to the continued spread of this new virus.
To provide a solid scientifc basis for our recommendations, the Council assembled a PCAST Working Group
of non-governmental experts, including one other member of PCAST, from a number of relevant felds (virol-
ogy, public health, pediatrics, medicine, epidemiology, immunology, and others). On July 16-17, the Working
Group met with government ofcials and others to discuss various aspects of the 2009-H1N1 pandemic,
and then developed an in-depth report based on its own knowledge, the information provided during the
meeting, and additional consultations with government, academic, and industry experts. The results of that
report were presented to PCAST at its meeting on August 6-7, and the Council then approved an Executive
Report of fndings and recommendations for transmittal to you along with the in-depth Working Group
report to PCAST.
The Working Group report discusses the complexities posed by infuenza epidemics, and the uncertainties
inherent in an epidemic that is still in progress. The report identifes the key decisions and actions to be
taken, while recognizing that many decisions (for example, relating to use of vaccines and to school closures)
cannot be resolved now but will need to be made rapidly as the epidemic unfolds. In these instances, the
Working Group report instead ofers guidance about how decisions should be made over the coming weeks
and months.
PCAST hopes that its Executive Report and the full Working Group report help lay a foundation for the medi-
cal, scientifc, social, and fnancial decisions you and others in the Federal Government must make this fall.
We are grateful for the opportunity to serve you and the country in this way.
Sincerely,
John P. Holdren
Co-Chair
Eric Lander
Co-Chair
Harold Varmus
Co-Chair
vii
vii
Te President’s Council of Advisors on
Science and Technology
Executive Report
U.S. Preparations for the 2009-H1N1 Infuenza
In April 2009, a novel infuenza A (H1N1) virus (2009-H1N1) appeared in Mexico, causing pneumonias
and 59 deaths in Mexico City alone. The virus soon spread to the United States and to other continents.
Within two months, the World Health organization (WHO) declared that the viral outbreak met the
criteria of a level 6 pandemic. Although initial concerns of an extremely high fatality rate have receded,
the expected resurgence of 2009-H1N1 in the Fall poses a serious health threat to the United States.
Since the initial report of the outbreak, the Federal Government, through various departments, agen-
cies, and ofces, has been actively studying the course of events, responding to them, and planning
for a resurgence of the pandemic this fall. In late June, President Obama requested that his Council of
Advisors on Science and Technology (PCAST) undertake an evaluation of the 2009-H1N1epidemic and
the nation’s response to a probable recurrence.
In this Executive Report, PCAST assesses the emerging Federal response to a second wave, identifes criti-
cal questions and gaps in this response, and suggests additional opportunities for mitigation. PCAST’s
observations, conclusions, and recommendations presented here are based on the analysis of its 2009-
H1N1 Working Group, consisting of 3 PCAST members and a further 11 non-governmental experts in
virology, public health, pediatrics, medicine, epidemiology, immunology, and other relevant scientifc
felds. The Working Group’s deliberations were informed by discussions with government ofcials and
others on various aspects of the 2009-H1N1 pandemic.
2009-H1N1 in Historical Context
Based on the history of infuenza pandemics over the past hundred years, PCAST places the current
outbreak somewhere between the two extremes that have informed public opinion about infuenza. On
the one hand, the 2009-H1N1 virus does not thus far seem to show the virulence associated with the
devastating pandemic of 1918-19; moreover, medical science now has many potent tools at our disposal
to mitigate an infuenza pandemic in ways that were not possible ninety years ago. On the other hand,
the 2009-H1N1 virus is a serious threat to our nation and the world, unlike the “swine fu” episode in
1976 that led to the vaccination of over 40 million Americans in the absence of any spread of the virus
beyond an initial four cases at a single Army base.
viii viii ix
The Current Situation and a Plausible Scenario
Indeed, the 2009-H1N1 infuenza is already responsible for signifcant morbidity and mortality world-
wide — from its appearance in the spring, its continued circulation in the U.S. this summer, and its spread
through many countries in the Southern Hemisphere during their winter season. While the precise
impact of the fall resurgence of 2009-H1N1 infuenza is impossible to predict, a plausible scenario is
that the epidemic could:
• produce infection of 30–50% of the U.S. population this fall and winter, with symptoms
in approximately 20–40% of the population (60–120 million people), more than half of whom
would seek medical attention.
• lead to as many as 1.8 million U.S. hospital admissions during the epidemic, with up to
300,000 patients requiring care in intensive care units (ICUs). Importantly, these very ill patients
could occupy 50–100 percent of all ICU beds in afected regions of the country at the peak of
the epidemic and could place enormous stress on ICU units, which normally operate close to
capacity.
• cause between 30,000 and 90,000 deaths in the United States, concentrated among chil-
dren and young adults. In contrast, the 30,000–40,000 annual deaths typically associated with
seasonal fu in the United States occur mainly among people over 65. As a result, 2009-H1N1
would lead to many more years of life lost.
• pose especially high risks for individuals with certain pre-existing conditions, including
pregnant women and patients with neurological disorders or respiratory impairment, diabetes,
or severe obesity and possibly for certain populations, such as Native Americans.
There is an important issue with respect to timing:
• The fall resurgence may well occur as early as September, with the beginning of the school term,
and the peak infection may occur in mid-October.
• But signifcant availability of the 2009-H1N1 vaccine is currently projected to begin only in mid-
October, with several additional weeks required until vaccinated individuals develop protective
immunity.
This potential mismatch in timing could signifcantly diminish the usefulness of vaccination for mitigat-
ing the epidemic and could place many at risk of serious disease.
PCAST emphasizes that this is a planning scenario, not a prediction. But the scenario illustrates that an
H1N1 resurgence could cause serious disruption of social and medical capacities in our country in the
coming months. The circumstances underscore the importance of:
• ensuring that the nation’s complex and distributed healthcare systems are prepared to deal
with the potential surge in demand, especially with respect to critical care.
• ensuring that all feasible steps are taking to protect the most vulnerable populations.
viii viii ix
Preparations for the Pandemic: Observations and Recommendations
Preparation for the predicted fall resurgence has been constrained by time and materials: the virus
appeared in late spring and its resurgence is anticipated in early fall, while vaccine production currently
requires at least 6 months. On the other hand, the development of preparedness plans was greatly
stimulated by the recognition a few years ago of the threat posed by a highly lethal avian infuenza;
preparations developed for this potential threat facilitated the response to the current, quite diferent
strain of infuenza virus.
PCAST is impressed by the eforts underway across our government—including the breadth and depth
of thinking, energy being devoted, and awareness of potential pitfalls. The response is probably the
best efort ever mounted against a pandemic, refecting past preparedness eforts and the quality and
commitment of the people involved.
Still, PCAST found some aspects of the decision-making and preparation processes that we believe could
be improved, even in the short time remaining before the fall. These fndings and recommendations
are discussed at considerable length in its Working Group report.
Refecting the rapid pace of response in the Federal Government, some of the suggested actions are
already being considered, planned, or initiated by relevant agencies. In these cases, our recommenda-
tions are intended to provide support and additional focus to such eforts. Our recommendations fall
into seven major categories:
1. Coordination. We suggest that coordination of the decision-makers could be more efectively
orchestrated if a single person in the White House were assigned the responsibilities of clarifying
decision-making authorities and processes, ascertaining that all important issues are resolved
in a timely fashion, and reporting to you about actions to be taken.
2. Scenarios. We believe that preparations could be strengthened if the Federal Government
developed and disseminated a few specifc planning scenarios that Federal, state, local, and
private entities could use to assess their capacities and plans for medical and non-medical
interventions.
3. Surveillance. The ability to respond to the epidemic will depend on reliable and timely informa-
tion about its course at the national, regional, and local level. We believe there are opportunities
to make important upgrades to existing national surveillance systems in time for the expected
fall resurgence.
4. Response. There are four critical pillars of a mitigation efort: vaccines, anti-viral drugs, medical
care, and non-medical interventions that diminish virus spread. In particular, we focus on deci-
sions that could reduce instances of severe disease and death by accelerating the delivery and
use of vaccines; developing integrated plans to protect especially vulnerable populations; and
ensuring access to intensive care facilities.
5. Barriers. Some legal, social, and fnancial barriers exist that may reduce compliance with some
recommended measures for mitigation and we propose ways that the Federal Government and
others could work to overcome such barriers.
x x xi
6. Communication. Communication plans for relaying to the states, health workers, and the gen-
eral public the government’s recommended actions for mitigation are in some cases inadequate
and should be strengthened.
7. Future Preparedness. The current outbreak highlights gaps in our capacity to combat epidem-
ics caused by infuenza and other agents. We outline steps that can be taken in the next few
years, including improving vaccine production and design, anti-viral drug development, and
health surveillance systems.
Action Items
In the report, PCAST makes a number of recommendations about specifc aspects of the national prepa-
rations. Several are of special importance and warrant consideration for immediate or near-term action.
Specifcally, PCAST proposes that the President:
i. Designate a senior member of the White House staf, preferably the President’s Homeland
Security Advisor, to be responsible for coordination of all major decision-making about the
2009-H1N1 pandemic.
and that the relevant Federal agencies:
ii. Produce and disseminate several planning scenarios and work with Federal, state, local, and
private entities to anticipate potential ‘surge’ demand (especially for critical care, e.g., ICUs
and respirators) and develop logistical plans for such contingencies.
iii. Expand CDC’s existing surveillance systems to track information about infuenza-like illnesses
from an integrated network of sites, including data from population sampling, emergency
rooms, and hospitals, with emphasis on critical care units.
iv. Accelerate production of an initial quantity of fnished vaccine as early as mid-September,
to allow vaccination of up to 40 million people, with emphasis on the most vulnerable age and
disease groups, as soon as initial data are available on safety and immunogenicity. This decision
would need to be made almost immediately.
v. Develop focused plans to identify, reach, and protect members of the most vulnerable
groups and their health care providers in time to make use of the protective methods at the
nation’s disposal.
vi. Prepare a communication plan that would deliver appropriate and efective messages about
the range of available medical and non-medical interventions, including especially vaccination,
to the public in a timely fashion.
vii. Organize a multi-agency effort, under the direction of the National Security Council, to
improve the design and production of influenza vaccines, so that effective vaccination
programs can begin more promptly in the course of future epidemics caused by new strains
of infuenza virus.
x x xi
Caveats About the Report
The urgency of an ongoing pandemic, one that is likely to worsen in the next month or two, has com-
pelled PCAST and its Working Group to perform its tasks rapidly. Under these circumstances, some of
the information gathered by the Working Group for this report (such as the schedule for availability of
vaccines and clinical data on infected individuals) must be viewed as provisional and subject to change.
Given the complexity of the situation and the many activities underway to deal with it, PCAST recog-
nizes that the Working Group could not analyze the problem from every perspective and has doubt-
less failed to acknowledge all of the useful work that is already being done by members of the Obama
Administration. In particular, the report does not rigorously address the measures that might need to be
taken in the unlikely event that the pandemic proves to be much more severe than we currently envision.
Next Steps
PCAST hopes that its report and that of its Working Group help guide the urgent work that the
Administration has undertaken to mitigate the efects of the 2009-H1N1 pandemic. PCAST and its
Working Group are prepared to respond to additional questions that members of the Administration
might have in the coming months.
xiii
xiii
Te President’s Council of Advisors on
Science and Technology
2009-H1N1
Working Group Report
xv
xv
PCAST
2009–H1N1 Working Group
Members
Ann M. Arvin
Lucile Salter Packard Professor of Pediatrics and
Professor of Microbiology & Immunology
Vice Provost and Dean of Research
Stanford University
Emilio A. Emini
Executive Vice President
Vaccines Research and Development
Wyeth Pharmaceuticals
Harvey V. Fineberg
President
Institute of Medicine
Don Ganem
Investigator, Howard Hughes Medical Institute
Professor of Microbiology and Medicine
University of California San Francisco
Marcelle Layton
Assistant Commissioner
Communical Disease Program
New York City Department of Health
Marc Lipsitch
Professor of Epidemiology
Director, Center for Communicable
Disease Dynamics
Harvard School of Public Health
Arnold S. Monto
Professor of Epidemiology
University of Michigan School of Public Health
Peter Palese
Horace W. Goldsmith Professor
Chair, Department of Microbiology
Professor, Department of Medicine
Mount Sinai School of Medicine
Ed Penhoet
Director, Alta Partners
Chairman of the Board, Immune Design
Chairman of the Board, Metabolex
Rajeev Venkayya
Director, Global Health Delivery
Bill & Melinda Gates Foundation
Robert G. Webster
Rose Marie Thomas Chair in Virology
Department of Infectious Diseases
St. Jude Children’s Research Hospital
Richard J. Whitley
Distinguished Professor
Loeb Scholar
Professor of Pediatrics, Microbiology, Medicine
and Neurosurgery
University of Alabama at Birmigham
Staf
Deborah Stine
Executive Director, PCAST
Peter Emanuel
Assistant Director, Chemical & Biological
Countermeasures, OSTP
Co-Chairs
Eric Lander
President and Director
Broad Institute of Harvard and MIT
Harold Varmus
President
Memorial Sloan-Kettering Cancer Center
xvii
xvii
Table of Contents
I. Introduction and Charge .................................................................................................1
II. The U.S. Experience with Infuenza Over the Last Century .........................................7
Introduction ............................................................................................................................................... 7
1918-19 Infuenza Pandemic ................................................................................................................ 8
1976 Swine Flu “Fiasco” ........................................................................................................................... 8
Other Pandemics ...................................................................................................................................... 9
Avian Flu ....................................................................................................................................................10
Lessons for Fall 2009 ..............................................................................................................................11
III. Anticipating the Return of 2009-H1N1: Envisioning Scenarios .............................. 13
Introduction .............................................................................................................................................13
The Need for Concrete Scenarios for Response Planning .......................................................15
IV. Ensuring Adequate Data for Decision Making: Surveillance Systems ................... 21
Introduction .............................................................................................................................................21
Existing Data Streams ...........................................................................................................................22
Shortcomings of Current Data Streams .........................................................................................23
Recommendations .................................................................................................................................24
Conclusions ..............................................................................................................................................29
V. Responding to the Pandemic ..................................................................................... 31
Introduction .............................................................................................................................................31
Vaccines and Antiviral Drugs ..............................................................................................................34
Medical Response ..................................................................................................................................39
Non-medical Mitigation Measures ...................................................................................................41
International Considerations Presented by the Pandemic .....................................................42
An Improbable Scenario Requiring More Stringent Non-Medical Measures ...................44
xviii xviii 1
VI. Lowering Financial and Regulatory Barriers to Efective Response ...................... 47
Introduction .............................................................................................................................................47
Emergency Funding for Federal, State and Local Actions .......................................................48
Lowering Barriers to Hospital Care ...................................................................................................48
Non-medical Mitigation Activities ...................................................................................................50
VII. Improving Communications .................................................................................... 53
Introduction .............................................................................................................................................53
Communication with State and Local Health Departments ...................................................54
Communication with Health Care Providers ................................................................................55
Communication with the General Public ......................................................................................55
VIII. Planning for More Efective Future Strategies Against Infuenza ........................ 59
Accelerate Speed and Increase Yield and Efectiveness of Vaccine Production ..............60
Facilitate Development of Additional Antiviral Drugs ..............................................................61
Facilitate Development of Rapid Point-of-Care Diagnostics ..................................................62
Improve Medical Surveillance ............................................................................................................62
Enhance Animal Surveillance Measures.........................................................................................64
References ........................................................................................................................ 65
Acknowledgements ......................................................................................................... 67
xviii xviii 1
I. Introduction and Charge
On April 15, 2009, the frst case of infection with novel infuenza A (H1N1) virus (“swine fu,” hereafter
“2009-H1N1”) was confrmed in the United States. In March and April, Mexico had experienced an
outbreak of unexplained pneumonia, with hundreds of reported cases and 59 deaths in Mexico City
alone. It soon became clear that 2009-H1N1 was associated with the Mexican pneumonia outbreak and
that the virus was spreading within North America; it was soon detected in many other countries. On
April 29, the World Health Organization (WHO) raised its infuenza pandemic alert level to Phase 5, just
short of declaring that a global infuenza pandemic was underway. In those early days of the outbreak,
severe cases were the most readily counted because they were usually hospitalized. As of April 29, 8 of
148 individuals with confrmed 2009-H1N1 infection worldwide had died (5.4 percent), initially raising
CHAPTER SUMMARY
In April 2009, a novel in?uenza A/H1N1 virus (2009-H1N1) appeared in Mexico, causing pneumonias and
59 deaths in Mexico City alone. The virus soon spread to the United States and to other continents. Within
two months, the World Health Organization (WHO) declared that the viral outbreak met the criteria of a
level 6 pandemic. As of August 2009, the virus continues to spread in the United States and elsewhere.
Although initial concerns of an extremely high fatality rate have receded, the expected resurgence of
2009-H1N1 in the fall poses a serious health threat to the United States. Further, although most cases are
mild, serious complications arise in some individuals, especially those with underlying medical complica-
tions such as pregnant women and those with neurological conditions. Under some models, seriously
ill in?uenza patients could require 50 to 100 percent of intensive care unit (ICU) beds at the epidemic’s
peak, stressing the medical and public health systems to the point of overwhelming some hospitals,
and could cause from 30,000 to 90,000 deaths, concentrated among children and young adults.
Since the initial report of the outbreak, the Federal Government, through various departments, agen-
cies and o?ces, has been actively studying the course of events, responding to them, and planning for
a resurgence of the pandemic this fall.
Under the aegis of the President’s Council of Advisors on Science and Technology (PCAST), a
Working Group on 2009-H1N1 in?uenza was formed in response to the President’s request for an
expert external review of the epidemic and the nation’s response to an anticipated resurgence in
the fall of 2009. Overall, the Working Group was deeply impressed by the e?orts underway across the
Federal Government—including the breadth of issues being anticipated and addressed, the depth of
thinking, the overall level of energy being devoted, and the awareness of potential pitfalls.
The Working Group did identify some potential ways to strengthen the response, and it has provided
recommendations. In many cases, the relevant agencies are already aware of these opportunities and
are taking steps in these directions. The Working Group’s recommendations are intended to provide
support for and additional focus to such e?orts.
2 2
REPORT TO THE PRESI DENT ON U. S. PREPARATI ONS FOR 2009-H1N1 I NFLUENZA
3
the possibility that the virus was extremely virulent, comparable to or even worse than the viral strain
that caused the 1918-19 infuenza pandemic. But uncertainty about the number of unconfrmed cases—
especially infected individuals with mild or no symptoms—made it impossible to assess severity accu-
rately. In fact, subsequent data revealed that the case-fatality ratio was actually much lower—although
still a cause for serious public concern.
As more cases were confrmed around the United States in late April and early May, the Centers for
Disease Control and Prevention (CDC), in coordination with state and local public health departments,
increased surveillance eforts and issued interim guidance to control the virus’s spread. Intensifed sur-
veillance rapidly clarifed that many mild cases had been missed in the early phases of the epidemic,
easing concerns that the new virus was extremely virulent, but still leaving uncertain the overall spec-
trum of illness and incidence. Media coverage was intense. Advisories warned against travel to Mexico
and soon against travel to the United States. In regions of the United States with reported cases, some
schools were closed just days or weeks short of the end of the school year. By June 11, the virus had
spread to 74 countries and all continents but Antarctica, and WHO declared the outbreak an infuenza
pandemic (Phase 6) on the basis of its geographic spread. As summer began and schools adjourned,
travel advisories were rescinded and media and public attention waned.
Although infuenza usually becomes almost undetectable during the summer, transmission of 2009-
H1N1 virus continues in the United States (albeit at a lower level) and in other Northern Hemisphere
countries, notably the United Kingdom. While monitoring of clinical outcomes to date suggests that
most 2009-H1N1 infections are mild, there have been notable reports of people with severe illnesses,
many of them requiring intensive hospital care, and deaths, predominantly among relatively young
people. Certain groups—such as the First Nation people in rural Manitoba, Canada—appear to have
been particularly hard hit. And even mild outbreaks have in many cases been socially disruptive.
The Southern Hemisphere’s regular infuenza season is now underway, and 2009-H1N1 has spread
rapidly within Argentina, Australia, Chile, and New Zealand, appearing to eclipse infection with the
expected seasonal infuenza virus and stressing the medical and public health systems to the point of
overwhelming some hospitals and flling some intensive care units (ICUs) to capacity. For example, in
Australia, 11 percent of over 20,000 confrmed cases of 2009-H1N1 infuenza have been hospitalized.
And of the 410 cases now hospitalized, 110 are in ICUs.
As the infuenza season in the Northern Hemisphere approaches and schools reopen, the pandemic
is expected to accelerate, with the potential for signifcant health consequences in the United States,
Europe, and other regions. Based on past pandemics, this acceleration is likely to occur before the normal
(i.e., seasonal) infuenza season, starting in September and peaking in October. In a typical (non-pan-
demic) season, infuenza becomes prevalent in winter and causes an estimated 30,000 to 40,000 deaths
in the United States, with about 90 percent of those deaths occurring in patients ages 65 years or older.
A plausible scenario, given current data (and described in more detail in Chapter 3), is that 2009-H1N1
infuenza could place enormous stress on U.S. medical and public health systems, as well as on an
American economy already under stress. It could cause anywhere from 30,000 to 90,000 deaths in the
United States in fall 2009, mainly among younger adults and children (unlike the situation with seasonal
infuenza, which causes death mainly in the elderly) and those with certain pre-existing conditions.
2 23
I. I NTRODUCTI ON AND CHARGE
Moreover, as much as 50 to 100 percent of ICU capacity in the United States could be required solely
to treat 2009-H1N1 patients at the peak caseload, in hospital units that typically run at 80 percent of
capacity. Such stress on ICUs and emergency departments would cause severe disruption of hospital
function, necessitating marked curtailment of all but the most urgent admissions and surgeries.
These estimates assume that the clinical severity of infection with the 2009-H1N1 virus will be the
same this fall as it was in the spring. Even so, the estimates of serious disease and death could be of
by several-fold because the total number of infected persons to date—and proportion of severe infec-
tions—remain extremely uncertain. In addition, there is a possibility, difcult to quantify, that severity
could change, either up or down, as the virus evolves (see Box 1A). Various public health measures can
be taken to attempt to mitigate the pandemic. It is clear, however, that many of the decisions about
whether and when to employ these mitigation measures will have to be made rapidly, before many
uncertainties are resolved.
Since the outbreak began in late April 2009, the Federal Government—through various departments,
agencies, and ofces, especially the Department of Health and Human Services (DHHS), the Department
of Homeland Security (DHS), and components of the White House staf—has been actively studying
the course of events, responding to them, and planning for a resurgence of the pandemic this fall. As
a consequence of concerns since 2004 about the possibility of a pandemic involving the highly patho-
genic avian (H5N1) infuenza virus, the United States has been especially well positioned to organize a
response to the 2009-H1N1 pandemic. Preparedness activities have included:
• releasing antiviral drugs from the national stockpile;
• contracting with several pharmaceutical companies to develop and manufacture vaccines
against 2009-H1N1 as quickly as possible;
• removing restrictions on the use of unapproved medical treatments and tests under public
health emergency conditions;
• increasing surveillance at multiple levels (e.g., virus identifcation and characterization; data on
outpatients, hospitalized patients, and mortality);
• convening a summit of states, tribes, and territories to plan responses to the epidemic;
• overseeing congressional passage of an emergency funding measure (described in greater detail
below) for a variety of uses, including purchase of vaccines and drugs, support of non-Federal
public health initiatives, and additional needs at CDC and the Food and Drug Administration
(FDA);
• providing funds to state and local public health ofces and health care systems to step up their
preparedness eforts;
• undertaking public communication eforts; and
• issuing guidance for the general public, clinicians, laboratories, pregnant women, schools, and
communities.
4 4
REPORT TO THE PRESI DENT ON U. S. PREPARATI ONS FOR 2009-H1N1 I NFLUENZA
5
On June 24, 2009, President Obama signed into law the Supplemental Appropriations Act, 2009 (Public
Law 111-32). Within the Act, Congress appropriated $7.65 billion to DHHS to prepare for the 2009-H1N1
infuenza outbreak, including a $5.8 billion contingent appropriation. After spending an initial $1.85
billion on procurement of vaccines, expansion of surveillance activities, and preparation for a possible
immunization campaign, on July 16 the President designated an additional $1.825 billion as emergency
funds to support additional measures related to infuenza vaccination eforts, leaving $3.975 billion in
reserve as contingency funds.
In early July, President Obama asked his Council of Advisors on Science and Technology (PCAST) to
provide an expert external assessment of the epidemic and to ofer guidance about the nation’s plans
BOX 1A: THE 2009-H1N1 INFLUENZA VIRUS
In the few months since its ?rst isolation, the 2009-H1N1 in?uenza virus has been quickly subjected to
intense study of its molecular properties, illustrating the capacities of modern virology and genetics.
Like other influenza viruses, the genes of the 2009-H1N1 virus are arrayed on eight segments of
single-stranded RNA that, in the aggregate, constitute the viral genome. Genomes of these viruses are
inherently unstable, with frequent changes in each RNA segment accounting for genetic “drift,” and
reassortment of segments when cells are co-infected with two or more viruses, accounting for more
dramatic genetic “shift.” The 2009-H1N1 virus is a “triple reassortant,” as it contains RNA segments from
avian-, human-, and swine-origin viruses. The majority of RNA segments, including the segment cod-
ing for the hemagglutinin protein, come from swine-origin viruses. Hemagglutinin mediates immune
protection against in?uenza viruses, is notable for rapid changes in its composition, and forms the basis
for the annual reformulation of in?uenza virus vaccines. It is also one of the two major proteins on the
viral surface, hemagglutinin (H) and the neuraminidase (N), that determine the subtype classi?cation
of type A in?uenza viruses as ‘H1N1,’ ‘H3N2,’ etc.
Of all of the H1 subtype hemagglutinins in viruses isolated from humans in the 20th and 21st centuries,
the hemagglutinin of the 2009-H1N1 appears to be genetically most similar to those of the 1918-19
H1N1 pandemic virus and of the H1N1 virus of swine-origin that caused the limited human outbreak at
an army base in New Jersey in 1976. It is less closely related to the hemagglutin in other strains of H1N1
virus responsible for seasonal in?uenza in recent years.
The relatively low virulence of 2009-H1N1 virus may be attributed, in part, to the absence of a major
determinant of virus virulence—the expression of a protein called PB1-F2 that is known to cause cell
death and was found in viruses responsible for the major in?uenza pandemics of 1918-19 (H1N1), 1957
(H2N2), and 1968 (H3N2).
The 2009-H1N1 virus is atypical in some ways, including its transmissibility during warm seasons and its
apparent infection of the gastrointestinal tract in approximately one-third of serious cases. These and
other properties of the new virus will be subject to more intensive study and comparisons with earlier
isolates in the near future in order to understand its mode of pathogenesis, virulence, transmission rate,
and immunogenic properties.
4 45
I. I NTRODUCTI ON AND CHARGE
to respond to its likely resurgence in the fall. PCAST established a Working Group on 2009-H1N1, co-
chaired by Drs. Harold Varmus and Eric Lander, consisting of experts in the felds of virology, public
health, and medicine, with experience in the academic, governmental, philanthropic, and industrial
sectors.
PCAST’s charge was several-fold:
• to identify critical questions for which timely answers are needed by decision-makers;
• to survey and assess preparations currently underway in the Federal Government;
• to highlight major challenges and gaps; and
• to make specifc recommendations concerning additional opportunities to help mitigate a
serious 2009-H1N1 fu pandemic this fall.
The Working Group worked on an accelerated schedule during the month of July 2009 to respond
to its charge. It met July 16–17, 2009, in Washington, D.C., to hear presentations from Federal agency
leaders, epidemiologists, state and international public health ofcials, vaccine and drug developers,
and experts in social mitigation strategies, including public information and marketing. In addition,
interviews were conducted at other times with government ofcials and experts on various aspects of
the infuenza epidemic.
The Working Group’s goal was not to predict the severity of any next wave of the epidemic or to pre-
scribe specifc responses. Instead, the goal was to provide guidance to support and strengthen the many
eforts already underway to prepare the country for the expected resurgence of 2009-H1N1 in the fall.
To present its observations in a logical narrative, this report is organized in chapters focused on the
Nation’s prior experience with influenza; scenario planning; surveillance of the current epidemic;
decision-making about measures to mitigate the epidemic; lowering legal and economic barriers to
response; communications; and steps to strengthen the response to future epidemics. In addition to
providing specifc guidance to relevant agencies, the report aims to provide sufcient background to
be readable by members of the general public, who are understandably concerned about the current
outbreak and the Nation’s response.
MAIN CONCLUSION
Overall, the Working Group was deeply impressed by the e?orts underway across the Federal
Government—including the breadth of issues being anticipated and addressed, the depth of think-
ing, the overall level of energy being devoted, and the awareness of potential pitfalls. The response
is probably the best e?ort ever mounted against a pandemic, re?ecting both past preparedness
e?orts and the quality and commitment of the people involved.
The Working Group did identify some potential ways to strengthen the response. In many cases,
the relevant agencies are already aware of these opportunities and are taking steps to address
them, while recognizing that time is short and that some goals may not be achievable. The Working
Group’s recommendations are intended to provide support for and additional focus to such e?orts.
7
7
II. Te U.S. Experience with Infuenza Over
the Last Century
Introduction
Seasonal infuenza epidemics occur every winter, peaking between December and February, and are
estimated to cause 30,000 to 40,000 deaths in the United States alone, primarily in children under age
2 and adults over age 65, and more than 250,000 hospitalizations per year. The economic impact of
seasonal infuenza is estimated at $37 billion each year.
Since 1977, two infuenza A virus subtypes and one infuenza B subtype have circulated each winter.
Seasonal infuenza viruses undergo frequent mutations that can cause small changes in proteins nec-
essary for entry into human cells, allowing them a measure of protection against immune responses,
even in people who were infected with prior strains. (Infuenza viruses are classifed by these proteins,
called hemagglutinin [H] and neuraminidase [N]; see Box 1A in Chapter 1.) This genetic variability means
that people experience repeated infuenza infections over their lives and vaccine formulations must be
updated nearly every year.
At irregular intervals, new subtypes of infuenza burst on the scene and sweep through the human
population, which has no signifcant immunity to them. Such global pandemics appear to occur three
to four times per century. In the twentieth century, pandemics were caused by new variants of infuenza
CHAPTER SUMMARY
Seasonal in?uenza epidemics occur every winter and are estimated to cause some 30,000-40,000 deaths
in the United States alone, primarily in young children, the elderly, and others with underlying medical
conditions. Several times in the last century new subtypes of in?uenza have swept through the human
population—which has little or no immunity to them—and caused global pandemics.
Preparation for in?uenza pandemics is shaped in large part by the experiences of the pandemic of
1918-19, when 40-100 million people perished worldwide, and the swine ?u “?asco” of 1976, when 45
million Americans were vaccinated for a virus that never spread beyond a tiny cluster. In 2005, concerns
that the highly lethal avian H5N1 virus could precipitate an in?uenza pandemic led to signi?cant invest-
ments and improvements in Federal preparedness, although signi?cant transmission among humans
has fortunately not occurred to date. Based on available information, the in?uenza pandemics most
analogous to the current 2009-H1N1 outbreak may be those of 1957 and 1968, in which the death rates
were two- to four-fold higher than normal.
The main lessons from these experiences are that vigorous preparation and action can save lives, but
that it is critical to maintain situational awareness and ?exibility as a pandemic unfolds.
8 8
REPORT TO THE PRESI DENT ON U. S. PREPARATI ONS FOR 2009-H1N1 I NFLUENZA
9
A virus in 1918 (H1N1), 1957 (H2N2), and 1968 (H3N2). These pandemics varied in severity, for reasons
related both to the level of pre-existing immunity in the human population and to the genetic makeup
of the virus. In spite of extraordinary scientifc advances in understanding infuenza viruses, they remain
highly unpredictable.
Responses to new pandemics should be informed by historical experience. The severe pandemic of
1918–19 ofers some lessons about the benefts of rapid action, and the swine fu vaccination campaign
of 1976 is instructive about the risk of an overly aggressive response to an unproven threat. Over the past
fve years, the emergence of human cases of a highly pathogenic avian H5N1 infuenza has stimulated
unprecedented pandemic planning eforts.
1918–19 Infuenza Pandemic
The 1918–19 pandemic was the worst natural calamity of the twentieth century, with an estimated mor-
tality worldwide of 40–100 million lives. In the United States, between 500,000 and 750,000 perished at a
time when the U.S. population was one-third its current size. In contrast to seasonal infuenza, mortality
was especially high among previously healthy young adults. In cities that adopted early measures of
“social distancing,” such as cancelling public gatherings and closing schools, the epidemic appeared to
have spread more slowly and reached a lower peak incidence.
What is most informative about the 1918–19 pandemic for current planning purposes is its pattern
of spread. A frst, or spring, wave began in March 1918 and spread unevenly across the United States,
Europe, and Asia. Although illness rates were high, death rates in most locations were not signifcantly
above those of seasonal infuenza. The spring outbreak was mild enough that the public health and
medical communities saw no cause for alarm. However, a second, fall wave spread globally from
September to November 1918, with death rates approximately ten-fold higher than in the spring. Cities
that responded rapidly by closing schools, churches, and theaters, restricting public gatherings, and
otherwise discouraging social interaction appear to have reduced transmission and mortality while the
measures were in efect. However, most cities could not sustain these measures, and many experienced
the return of infuenza as control eforts lapsed. In some places, a third wave occurred in early 1919.
Death from pneumonia was a hallmark of the 1918–19 fall and winter waves. The 1918–19 pandemic
vividly illustrates what can happen when the public health and medical communities lack knowledge,
contingency plans, and efective vaccines or treatments.
1976 Swine Flu “Fiasco”
The events of 1976 serve as an example of a public health response premised only on the “worst case”
scenario, which ended up being a false alarm. In January 1976, a novel H1N1 virus frst appeared in a
group of army recruits at Fort Dix, New Jersey. Four were hospitalized and one died. In March, on the
advice of public health experts, President Gerald Ford announced on television that he was asking
Congress for $137 million “to inoculate every man, woman, and child in the United States” against swine
fu. Within 10 weeks of the launch of the fall vaccination campaign, about 45 million people, or 1 in 4
Americans, had received swine fu immunizations. Public confdence, however, was soon shaken by the
deaths of three elderly adults in Pittsburgh soon after they received their swine fu shots. Although such
8 89
I I. THE U. S. EXPERI ENCE WI TH I NFLUENZA OVER THE LAST CENTURY
events are expected by chance, local public health ofcials and the media raised the possibility that
the deaths were due to the immunizations. Later reports found Guillain-Barré syndrome, a paralyzing
neuromuscular disorder, to be associated with 1976 vaccination at a frequency of approximately 1 per
100,000 vaccinations. With no disease from the swine fu virus having appeared since the outbreak at
Fort Dix, even this relatively rare complication was enough to lead to the suspension of the immuniza-
tion program.
The key policy error in 1976 was to bundle all decisions (e.g., make the vaccine, immunize everyone,
make a Presidential announcement) into a single “go” or “no-go” decision, with no provision for the
monitoring of the situation and continual reconsideration of policy directions based on new evidence.
The experience of 1976 highlights the challenge of coordination horizontally across diferent agencies
of the Federal Government; vertically across the various levels of government (Federal, state, local);
among public ofcials and health professions and institutions; and between the public and private sec-
tors. The 1976 swine fu immunization program highlighted other lessons, including the importance of
communication to the public, the long-term need to preserve credibility, and the need for preparations
relating to vaccine liability insurance anticipation of coincident deaths in a mass immunization program,
the potential impact of vaccine side efects, and the role of chance.
In applying these lessons to present circumstances, it is worth noting a number of crucial diferences
between then and now. Among them: (1) the current 2009-H1N1 is continuing to spread, unlike the
single, self-quenching outbreak at Fort Dix; (2) a wider array of interventions, including antiviral medica-
tions, is available; (3) more sophisticated characterization and surveillance systems for circulating viral
strains are in place; (4) the Federal Government has a more complex structure and a larger number of
relevant agencies and ofcials; (5) the media are vastly more varied and operate on a continuous news
cycle; and (6) widespread international travel contributes to accelerated transmission around the world.
Other Pandemics
The two other infuenza pandemics in the last century also provide insight into the current situation.
The so-called “Asian Flu” of 1957 appeared in the United States in late spring. Small outbreaks occurred
over the summer, but transmission accelerated in the late summer through early fall, peaking in October
before vaccine supplies were widely available. Public health authorities learned an important lesson
about the potential value of early protection against infuenza. After a lull following the October peak,
there was a smaller upsurge in transmission in early 1958, in which the elderly were disproportionately
afected. Mortality in 1957–58 was high—an estimated 70,000 deaths in a population of about 170
million. Although death rates were highest among the elderly, about 30 percent of all deaths occurred
in those under age 65.
The mildest of the twentieth century pandemics occurred in 1968, with an estimated 34,000 deaths in
a population roughly two-thirds of today’s; death rates were highest in the elderly, but about half of all
deaths occurred in people under age 65. The 1968 virus emerged frst in Hong Kong in mid-1968 and
appeared in the United States in September, but did not peak until December 1968/January 1969. One
reason for the slower spread and reduced death toll during the 1968 pandemic may be that the virus
(H3N2) shared some similarities with the virus that was already circulating (H2N2), so the population
may have been partially immune.
10 10
REPORT TO THE PRESI DENT ON U. S. PREPARATI ONS FOR 2009-H1N1 I NFLUENZA
11
In the decade following each of the twentieth-century pandemics, seasonal epidemics continued and
excess deaths in younger age groups remained elevated above normal seasonal levels. These recent
pandemics illustrate that the timing of peak pandemic activity may be earlier than that of normal fu
season, but unpredictable in that younger age groups sufer more during pandemics than during sea-
sonal infuenza outbreaks, and that the impact of new strains on these younger groups persists into
subsequent seasons.
Avian Flu
In Hong Kong in 1997, a highly pathogenic avian H5N1 virus was found to have infected large numbers
of poultry and a small number of humans. Following initial control by extensive slaughter of poultry
focks, the virus disappeared, only to reappear in 2003–2004. The virus was felt to be a potential pan-
demic threat because, although the rate of bird-to-human transmission was low and person-to-person
spread was rare, the mortality rate was over 60 percent.
The possibility that H5N1 could acquire the ability to transmit efciently between humans and thereby
start a new and severe pandemic spurred major pandemic-planning eforts at the state, Federal, and
global levels. Beginning in 2005, the Federal Government undertook a number of initiatives to address
this threat, including: (1) developing a “National Strategy for Pandemic Infuenza” to guide the pre-
paredness eforts of Federal departments and agencies, state and local authorities, businesses, and
the public; (2) requesting that Congress appropriate $7.1 billion to establish a domestic stockpile of
antiviral medications and pre-pandemic vaccine and to signifcantly expand domestic infuenza vac-
cine production capacity; (3) developing guidance on pandemic infuenza preparedness for the public
and a broad spectrum of stakeholders outside of the Federal Government; (4) establishing policies to
guide the pandemic response in areas such as border management and prioritizing allocation of pre-
pandemic vaccine; and (5) creating the International Partnership on Avian and Pandemic Infuenza to
facilitate global surveillance and preparedness actions.
These and other eforts in response to the H5N1 threat have informed and guided many of the actions
undertaken in response to the 2009-H1N1 outbreak to date.
10 10 11
I I. THE U. S. EXPERI ENCE WI TH I NFLUENZA OVER THE LAST CENTURY
Lessons for Fall 2009
Given the concern about avian infuenza and awareness of the catastrophic results of the 1918–19 pan-
demic, much of the efort for pandemic planning has been directed toward responding to an extremely
severe pandemic. This worst-case-scenario planning has led to improvements in the efciency of vaccine
production and testing, stockpiling of antiviral drugs, and other measures that will be valuable in the
fall, if used appropriately. However, unless the severity of the 2009-H1N1 infuenza increases markedly,
it is unlikely that community mitigation on the scale envisioned for a more severe pandemic will be
required. On the other hand, as described in the next chapter, it is already clear that the current pandemic
is no false alarm (as in 1976) and has the potential to cause serious health consequences, especially in
relatively young age groups and in individuals with certain pre-existing medical conditions.
While the features of 2009-H1N1’s next wave cannot be accurately predicted, history teaches us that
the most efective responses will be achieved by advanced planning, knowledgeable judgments about
the range of possible events, continued situational awareness about the pandemic, and fexibility in
thinking and decision making.
13
13
III. Anticipating the Return of 2009-H1N1:
Envisioning Scenarios
Introduction
Because the course of the 2009-H1N1 pandemic cannot be accurately predicted, it is important to have
a clear picture of our current knowledge and to envision a range of specifc scenarios against which to
test our planning and capabilities. While changes in the virus remain possible, the current picture of
2009-H1N1 is as follows:
CHAPTER SUMMARY
While the course of the 2009-H1N1 pandemic cannot be accurately predicted, it is important to have a
clear picture of our current knowledge and to envisage a range of speci?c scenarios against which to
make plans and assess our capabilities.
Our current knowledge is that the virus is readily transmissible, especially to younger age groups, and
causes severe clinical manifestations in a small but signi?cant proportion of cases, with most of the
severe cases in people under age 65. The proportion of in?uenza cases that ends in death appears similar
to that for seasonal in?uenza (perhaps 1 per 1,000 patients seeking medical attention), but the absolute
number of deaths is expected to be at least as high, if not substantially higher, than for seasonal ?u
because a higher proportion of the population is likely to become infected (perhaps 40 to 60 percent
for pandemic ?u versus perhaps 5 to 20 percent for seasonal ?u). Moreover, the distribution of deaths is
likely to cause a greater loss of expected years of life because the virus predominantly a?ects younger
people. Some speci?c individuals appear to be at much higher risk, including patients with neurologi-
cal disorders, pregnant women, and patients with asthma. Certain ethnic groups also may be at higher
risk, such as Native Americans. Notwithstanding these observations, there remains great uncertainty
about the likely course of the pandemic.
The Working Group believes that planning activities would be aided by development of a small number
of speci?c, shared scenarios describing the possible evolution of the pandemic.
We believe it would be valuable for DHHS to develop a limited number of speci?c scenarios for dis-
semination to Federal, state, local and private decision-makers, to be used for assessing capabilities
and planning responses.
For planning purposes, we describe a plausible scenario in which the pandemic causes between
30,000 and 90,000 deaths and requires at its peak 50 to 100 percent of ICU beds in a?ected regions of
the country, placing extreme stress on a system in which 80 percent of ICU beds are already otherwise
occupied. Analysis of this scenario and alternative scenarios should facilitate decision making about the
use of mitigation methods in response to new information about the epidemic.
14 14
REPORT TO THE PRESI DENT ON U. S. PREPARATI ONS FOR 2009-H1N1 I NFLUENZA
15
• The virus is transmitted readily between people at a rate comparable to that estimated for previ-
ous pandemic strains. In most places where surveillance is available, there is clear evidence of
ongoing transmission even through the summer.
• Confrmed cases are concentrated in younger age groups, up to age 24. According to CDC, infection
risk in the 0 to 24 age group is 4 to 5 times greater than for those in the 25 to 49 age group, and
20 times greater than those over age 65.
• Almost all severe cases are in people younger than age 65. To date, 83 percent of deaths and 71 per-
cent of hospitalizations from 2009-H1N1 in the United States have been in people between the
ages of 5 and 64. This is in stark contrast to seasonal infuenza, in which two-thirds of hospitaliza-
tions and almost 90 percent of deaths occur in persons 65 or older. This means that the years
of anticipated life lost per death are much greater than is usual as a result of seasonal infuenza.
• The case-fatality ratio (i.e., proportion of infected individuals who die as a result of the infection)
appears to be similar to seasonal infuenza—possibly on the order of 0.1 to 0.3 percent of medically
attended cases (i.e., those infections requiring hospitalization or primary care), and perhaps 0.05
to 0.2 percent of all symptomatic cases, whether or not medical care is sought. However, these
numbers are highly uncertain, in particular because the number of medically attended cases
is not well measured and the number of mild cases that do not come to medical attention is
essentially unknown.
• Despite a similar case-fatality ratio as for seasonal infuenza, the number of deaths from 2009-H1N1
is likely to be substantially higher and the deaths and severe illness in the population will likely be
concentrated among much younger people than is the case for seasonal infuenza. Because most
of the population lacks signifcant immunity to a new pandemic strain, the proportion of people
infected in a pandemic is usually substantially higher than for seasonal fu (50 to 70 percent
for pandemic fu versus perhaps 5 to 20 percent for seasonal fu). Second, as noted above, the
consequences of infection in this epidemic are already known to be far more severe for children
and young adults, and seemingly milder for people over age 65 (with deaths mainly among
children and young adults, compared to seasonal infuenza).
• Individuals with certain underlying medical conditions—including those with neurological disorders
and pregnant women—appear to be at substantially elevated risk of severe outcomes. According to
CDC, as many as one-third of fatal cases and one-ffth of hospitalizations have been in persons
with neurological (e.g., neurocognitive, neuromuscular, seizure) disorders. Pregnant women
accounted for 8 percent of deaths and 6 percent of hospitalizations, although they make up
about 1 percent of the population. Asthma, diabetes, immunodefciencies, chronic obstructive
pulmonary disease (COPD), and other chronic conditions appear to be associated with severe
outcomes as well.
• Certain populations appear to be at elevated risk of severe outcomes, including Native American
groups. American Indians and Alaska natives historically are at high risk for severe respiratory
infections; while it is unclear what toll they have sufered from 2009-H1N1, a cluster of severe
2009-H1N1 disease among First Nation people in remote Manitoba, Canada, suggests that
14 14 15
I I I. ANTI CI PATI NG THE RETURN OF 2009-H1N1: ENVISI ONI NG SCENARI OS
these groups may be at high risk. Cases of 2009-H1N1 virus infection in these clusters have had
rapidly progressive, difuse, lower airway disease (compared to seasonal infuenza, which more
commonly involves the upper airway), resulting in development of acute respiratory distress
syndrome (ARDS) and prolonged ICU admission.
The Need for Concrete Scenarios for Response Planning
The Working Group is concerned that uncertainty about the course of the 2009-H1N1 pandemic may
be hampering planning. While uncertainty is inherent in pandemics, planning activities may be aided
by development of a limited number of specifc, shared scenarios that describe the possible evolution
of the pandemic. Dissemination of a limited number of plausible scenarios would provide a framework
against which decision-makers at the Federal, state, and local levels could test current capabilities and
also structure specifc plans and decision points. In the absence of such frameworks, decision-makers
may fail to adequately assess capabilities relative to potential needs. They also may fail to foresee key
decision points and be forced into hasty decisions in the “heat of battle.” A scenario-based approach
already has been embraced by the United Kingdom, which has defned and made public its planning
assumptions for a “reasonable worst case” scenario.
To illustrate this approach, we describe in Box 3A a scenario that we consider to be a reasonable model
for planning, followed by sample decision points that might be appropriate. We also suggest indicators
and triggers to redirect decision making should an unanticipated event emerge within the scenario.
The assumed characteristics of the model scenario are described in Table 3-1.
MAIN RECOMMENDATION (CHAPTER 3)
We recommend that DHHS rapidly develop a limited number of speci?c scenarios and disseminate
them to Federal, state, local and private decision-makers for planning purposes. Components of
these scenarios ideally would include:
i. timing and magnitude of the fall epidemic;
ii. peak burden on primary care providers, emergency rooms, hospital admissions, and ICUs;
iii. number of doses and timing of vaccine availability;
iv. dosing requirements and e?cacy of vaccine; and
v. e?cacy and supply of antiviral drugs and medical materiel.
These scenarios would allow Federal, state, local and private entities to assess their capacity and
develop plans for deployment and targeting of medical and non-medical interventions under the
various scenarios.
In addition, it would be valuable for DHHS to de?ne trigger points related to changes in circum-
stances (e.g., change in severity) to facilitate timely action, as well as the data and data streams
that will be required to activate these trigger points.
16 16 17
BOX 3A: A MODEL SCENARIO: A POSSIBILITY, NOT A PREDICTION
One plausible scenario is that there will be resurgence in transmission of 2009-H1N1 this fall that is comparable to that
seen in spring-summer 2009 but with higher rates of transmission due to the resumption of school and the cooler,
drier weather. Following a relatively steady or declining burden of cases in August, the number of new cases will
begin to rise exponentially in the ?rst week of September, growing 10-fold about every 10 to12 days. Hypothetically,
the peak incidence of infection nationally will occur around October 15, with minor variations across the country such
that peak incidence almost everywhere will occur during the month of October. At this peak, perhaps 1 to 2 percent
of the population will become infected each day.
Predicting demand on the health care system during this peak is fraught with uncertainties, but the following numbers
from one possible scenario are illustrative. During the peak, 1 or 2 out of every 2,000 Americans might be hospital-
ized. Cases requiring mechanical ventilation or intensive care could reach 10 to 25 per 100,000 population, requiring
50 to 100 percent or more of the total ICU capacity available in the United States and placing great stress on a system
that normally operates at 80 percent of capacity. Because adult ICUs are not prepared to care for pediatric patients,
there could be a particular shortage of facilities for sick children. In particular locations, the stress on the health care
system could grow even more acute, as large outbreaks occur in prisons, schools, and isolated communities with
limited health care access, such as Native American reservations. As awareness of the pandemic spreads, pressure on
emergency departments could mount, with long lines and a need for triage of mild cases and non-in?uenza cases.
Alongside these health-related burdens, substantial absenteeism from work and school could occur, as sick children
stay home, schools with large outbreaks close, and parents are forced to stay home either because of their own ill-
ness or to take care of sick children. Key members of the social infrastructure, such as police o?cers and ?re?ghters,
are increasingly home ill. Exposure of healthcare workers to sick patients is continual and antiviral supplies prove
inadequate for ongoing prophylaxis of these workers. Retail pharmacies run out of antiviral supplies in late September
or earlier, and states face the demand to replenish these supplies from state stockpiles and state Strategic National
Stockpile allocations; however, many states lack the ability to move antiviral drugs into the retail supply chain and
focus on delivery to hospitals. Hospitals face competing pressures to dispense antiviral drugs for prophylaxis of their
workers, to provide them to patients appearing in the emergency room, or to save them for the sickest admitted
patients. Debates intensify about the value of antiviral use for long-term prophylaxis or early treatment for mild
infection in high-risk groups such as pregnant women and immunocompromised patients, treatment of severely ill
patients, and prophylaxis of essential healthcare workers.
In this model scenario, around October 15, as the epidemic peaks, a major supply of 2009-H1N1 in?uenza vaccine
becomes available. Immunization starts within days, with considerable geographical variation in the rate at which
administration occurs. Immunization of priority groups is completed by early or mid-November, resulting in immunity
in vaccinated adults by mid-late November, as the epidemic wanes in most populations. Children require two doses
and do not acquire immunity until December, when new infections will have become rare.
By the end of 2009, 60 to 120 million Americans would have experienced symptomatic infection with 2009-H1N1;
nearly 1 to 2 million would have been hospitalized, with about 150,000-300,000 cared for in ICUs; and somewhere
between 30,000 and 90,000 people would have died, the majority of them under 50 years of age.
We emphasize that this is a plausible scenario, not a prediction. By way of comparison, it is less severe by a factor of
three (in terms of expected deaths per capita) than the “reasonable worst case” planning assumptions, publicized
by the UK government, for the H1N1 resurgence in that country.
16 16 17
TABLE 3-1: A POSSIBLE (NOT PREDICTIVE) SCENARIO TO HELP PLAN FOR
THE FALL RESURGENCE OF 2009-H1N1 INFLUENZA IN THE UNITED STATES
Peak incidence date (unmitigated) October 15
Peak incidence of symptomatic disease
1–2% of U.S. population (3–6 million people)
on the U.S. epidemic’s single peak day
Percent of U.S. population (and approximate numbers) assuming no change in virus
Infected (indicated by seroconversions,
with or without symptoms)
30–50% (90–150 million)
Symptomatic 20–40% (60–120 million)
Needing medical attention 15–30% (45–90 million)
Needing hospital care 0.3–0.6% (0.9–1.8 million)
Needing Intensive Care Unit (ICU) facilities 0.05–0.1% (150,000–300,000)
Deaths 0.01–0.03% (30,000–90,000)
Peak occupancy of ICU beds due to
2009-H1N1
10–25 ICU beds/100,000 population
1
Peak occupany of hospital beds due to
2009-H1N1
50–150 hospital beds/100,000 population
2
High-risk groups for death or hospitalization
Pregnant women; children (0–4 years old);
patients with neuromuscular/neurocognitive
disorders, asthma, chronic obstructive pulmo-
nary disease, cardiovascular disease, diabetes,
severe obesity, or immunocompromising
conditions
3
Notes:
1
The United States has 20 ICU beds/100,000 population. The number of ICU beds available for pediatric patients is especially limited.
2
The United States has 211 hospital beds/100,000 population.
3
Cetron M, 2009 Pandemic Novel Infuenza A (H1N1): Community Mitigation, powerpoint presentation to PCAST H1N1 Working Group,
July 16, 2009.
18 18
REPORT TO THE PRESI DENT ON U. S. PREPARATI ONS FOR 2009-H1N1 I NFLUENZA
19
Beyond this scenario, alternative scenarios are needed to take into account the possibility that major
assumptions are incorrect. In particular, four variations are of notable importance:
1. A milder scenario in which the number of deaths and severe cases is much lower than outlined
here, perhaps because many mild cases or infections without symptoms were missed in the
spring, leading to an overestimate of the severity.
2. A modifed scenario in which a large fraction (e.g., one-third) of 2009-H1N1 cases are resistant
to oseltamivir (Tamifu) by the peak of the epidemic, reducing the efectiveness of an important
method for mitigating the epidemic.
3. A more severe scenario, in which changes in the virus result in elevated rates of hospitaliza-
tion, intensive care demand, and death. In this case, the focus of severe disease may shift more
toward the general population, making focused attention on groups that showed high-risk in
the spring less of a priority.
4. A delayed scenario in which transmission does not increase dramatically in the early autumn, so
that vaccine availability precedes the peak of the epidemic, reducing the number of subsequent
cases by conferring protection through immunization.
We emphasize again that the baseline scenario and the alternatives above are given as examples for
planning purposes; they are not predictions of what will happen. DHHS should exercise its own expert
judgment in defning the most relevant scenarios, with the caveat that scenarios other than the most
likely also should be considered. In addition, planning should include at least one scenario in which the
peak of the epidemic precedes the availability of signifcant vaccine supplies.
To illustrate the value of scenario-based analysis, it is useful to consider issues in vaccine allocation, since
the timing of availability of signifcant quantities of vaccine is still uncertain.
• In the model scenario, we assume that vaccine administration will commence around the peak
of the pandemic, with substantial population-level immunity occurring only 2 to 8 weeks after
the peak. In this case, vaccination will have limited value in reducing transmission. There may be
a strong rationale for vaccinating certain high-risk groups as rapidly as possible, by accelerating
the availability of at least some vaccine.
• If transmission is substantially delayed compared to the model scenario, vaccination of children
may be of high value epidemiologically: it may be possible to immunize many before exposure,
protecting them and decreasing spread.
• Conversely, if an increase in severity is detected with the expected rate of transmission, broader
administration of vaccine before complete clinical trial data are available may be appropriate,
and the use of adjuvant (as discussed in Chapter 5) might ofer an improved risk-beneft profle.
18 18 19
I I I. ANTI CI PATI NG THE RETURN OF 2009-H1N1: ENVISI ONI NG SCENARI OS
In addition to analyzing specifc scenarios in advance, it will be important to defne indicators that could
trigger the need to make changes in plans, and to incorporate these indicators into scenarios. We believe
that it would be valuable for DHHS to defne specifc triggers in advance to the extent possible, since
this will allow orderly decision making when unexpected events arise. (It is worth noting that beyond
these triggers, public pressure in response to events, such as a cluster of child deaths, may force certain
communities to change their strategies.) Examples of potential triggers are shown in Box 3B.
BOX 3B: EXAMPLES OF INDICATORS THAT MIGHT SERVE AS TRIGGERS
FOR ACTION
Indicators of unacceptable burdens on health care might trigger guidance to intensify community
mitigation to spread out the peak burden.
• observations of intense burdens on health care providers, particularly emergency department vis-
its and ICU admissions, in developed countries in the Southern Hemisphere (during our summer);
• observations of intense burdens on emergency departments and ICUs in leading areas of the
Northern Hemisphere in autumn;
• early evidence of intense burdens on health care providers without evidence that the infection
is peaking, including more healthy adults or children among severe cases.
Indicators of substantially increased severity that might justify changes in plans for antiviral use,
vaccine formulation (adjuvant use), or community mitigation.
• observations of novel symptomatology in the Southern Hemisphere or in isolated Northern
Hemisphere groups during summer, especially if combined with evidence of viral changes asso-
ciated with this symptomatology;
• increased ratios of ICU admissions to overall hospitalizations for in?uenza-like illnesses (ILI) (prob-
ably not observable unless very large changes occur);
• early evidence of intense burdens on health care providers without evidence that the infection is
peaking; changes in risk groups to include more healthy adults or children among severe cases.
In addition, concentrations of unusually severe cases could occur in a population subgroup de?ned by
geography/ethnicity (e.g., a remote Native American population), by underlying medical condition (e.g.,
pregnancy or a novel risk factor), or by place of residence (e.g., nursing home, prison). In such cases it will
be urgent to provide adequate treatment for a?ected persons, consider accelerating vaccine delivery
to similar groups, and ascertain reasons for this increased severity, distinguishing viral changes from
infectious cofactors, host factors, or other reasons.
21
21
IV. Ensuring Adequate Data for Decision
Making: Surveillance Systems
Introduction
Decisions about how to respond to the fall resurgence of 2009-H1N1 will have to be made quickly in
response to rapidly evolving information about the epidemic. The quality of decision making in response
to the 2009-H1N1 pandemic will depend on accurate and timely data to answer six key sets of questions:
1. Approximately, how many people are becoming infected, experiencing illness, seeking medical care,
being hospitalized, requiring intensive care, and dying from 2009-H1N1? These data allow esti-
mates of severity, which help determine the intensity of response that is justifed. A subsidiary
but important challenge is to estimate the same numbers for seasonal strains of infuenza that
may be circulating over the same period.
2. How are these numbers changing over time? Are they increasing or decreasing, and how quickly?
3. Who is becoming infected and who is at greatest risk of severe outcomes (i.e., hospitalization, ICU
admission, death)? Specifcally, what are the ages, underlying conditions, and other risk factors
for infection and severe outcome?
CHAPTER SUMMARY
Decisions about how to respond to the fall resurgence of 2009-H1N1 will have to be made quickly
in response to rapidly evolving information about the epidemic. The quality of decision-making will
depend on reliable and timely estimates of the number of people and speci?c subgroups that are
infected, ill, seeking medical care, being hospitalized, requiring intensive care, and dying from 2009-
H1N1; changes in the virus; stresses on health systems; and e?ectiveness of various medical and public
health interventions.
CDC, in close coordination with local and state public health departments, supports a number of impor-
tant systems for surveillance of in?uenza activity. These systems have provided valuable data through
the spring and summer, but they have shortcomings that will limit their ability to provide the data
needed to make informed decisions. While it is not possible to remedy all of these limitations before
Fall 2009, there are a number of short-term steps that could be taken to signi?cantly improve the data
available for decision making.
The Working Group believes there is an important opportunity to upgrade national surveillance systems
in time for Fall 2009 by knitting together and extending existing systems. We are aware that CDC is
developing plans along these lines and strongly support these e?orts.
22 22
REPORT TO THE PRESI DENT ON U. S. PREPARATI ONS FOR 2009-H1N1 I NFLUENZA
23
4. How is the virus changing? Most important, are there changes in illness severity, antigenic char-
acter (which could compromise immunity acquired from natural infection or a vaccine), or drug
resistance of the circulating virus?
5. Are the medical and public health systems able to respond adequately? Is there adequate capacity
in physician ofces, emergency rooms, hospitals, ICUs, morgues, points of dispensing (PODs),
and other public health venues set up for the pandemic?
6. How well do medical and public health responses work? Does the vaccine protect against infec-
tion or severe outcome? Is the vaccination strategy (e.g., mass vaccination clinics) able to target
efectively the recommended population groups? Does antiviral treatment reduce severity? Do
social mitigation measures reduce transmission?
Federal decision-makers need data that answer these questions to inform policies and recommenda-
tions about the priority groups for vaccination and treatment, to calibrate the intensity of social mitiga-
tion interventions, and to provide guidance to clinicians about appropriate treatment and prevention.
State and local decision-makers need the data for the same reasons, but they also need to understand
the situation in their communities, which may difer from the national average. Clinicians need data
especially related to questions 3 and 5 in order to target scarce treatment to the appropriate patients,
improve clinical treatment, and implement surge capacity plans in the event of increased demands on
the health care system. The general public needs to understand the size and severity of the epidemic and
be motivated to comply with social mitigation measures. Historically, compliance improves when the
epidemic is perceived to be severe. All of these data are needed as close to instantaneously as possible.
Existing Data Streams
CDC, in close coordination with local and state public health departments, supports a large number of
systems for surveillance of infuenza activity. The output of many of these systems is summarized publicly
on FluView www.cdc.gov/fu/weekly/, and includes measures (some more nationally representative than
others) of outpatient consultation for infuenza-like illnesses (ILI), hospitalization for infuenza, pediatric
deaths from infuenza, population-wide deaths from pneumonia and infuenza, and virus characteristics
(subtype and drug resistance). Federal decision-makers have relied on these systems as the main source
of data on trends in case numbers, age distribution, and virus characteristics.
A second key source of data on the epidemic in the early days of the spring wave of 2009-H1N1 was
the relatively detailed reports from state and local health departments describing individual confrmed
cases, noting (with varying completeness) key variables such as age, underlying conditions, and outcome
(i.e., recovery, hospitalization, ICU, death). By early May, this level of reporting had become unsustainable;
most jurisdictions stopped testing most mild cases for 2009-H1N1 virus and ceased detailed reporting
of individual cases. Local authorities in many communities continued gathering data on the most severe
cases, but these data were not systematically reported to CDC. Thus the clinical picture of confrmed
infection at the national level is relatively static, based on the frst case reports in the epidemic, and it
has not been possible to track the evolution of the epidemic in the United States.
22 22 23
IV. ENSURI NG ADEQUATE DATA FOR DECISI ON MAKI NG: SURVEI LLANCE SYSTEMS
Shortcomings of Current Data Streams
While the data collected about 2009-H1N1 thus far have been extremely valuable, they have a number
of limitations. The key shortcomings of existing data streams are:
• Some key data are not updated continuously. Since individual-level case reporting ended in
early May, there has been no systematic way to update national data on high-risk groups (i.e.,
according to age and predisposing conditions) for confrmed infection and severe outcome at
the national level. Some of these data exist locally but are not being aggregated into a national
picture now that reporting to CDC is not at the individual level. Up-to-date information on
these variables is needed, for example, to inform decisions on who should receive priority for
vaccination and antiviral treatment.
• Current systems are geographically limited. Infuenza activity is geographically heteroge-
neous, as was apparent in the spring wave of 2009-H1N1 and as is known for seasonal infuenza.
Responses, therefore, should vary locally, but they can do so only with local information. For
national decision-makers, geographic coverage is important to ensure a nationally represen-
tative picture of the epidemic. Many of the most detailed data feeds, such as the infuenza-
confrmed cases at hospitalization monitoring sites funded by CDC through the Emerging
Infections Program (EIP), are geographically limited. By chance, during the spring none of these
EIP sites was in an area with a heavy burden of 2009-H1N1 disease.
• Current systems do not provide reliable estimates of infuenza morbidity and mortal-
ity. For many purposes it is critical to know, for example, approximately how many people are
infected or hospitalized, measured as total numbers of people or numbers per 100,000 popula-
tion. Most of these systems do not answer that question, but instead measure what proportion
of visits to health care providers or emergency departments are for ILI, and what proportion of
ILI cases that undergo viral testing are positive for 2009-H1N1.
• No systematic approach yet exists to monitor the capacity of the health care system to
respond. Although many jurisdictions monitor emergency department volume, national inte-
gration of these data is geographically spotty. For total burden of hospitalizations and intensive
care admissions due to infuenza, few if any representative data are available. Such a system,
called “HAvbed,” is planned by DHHS but has not yet been implemented.
• Laboratory capacity to confrm diagnosis and isolate viruses for further characterization is
limited. Most public health laboratories now restrict virus testing to patients with severe disease
and many laboratories will be unable to maintain even this practice if the number of cases grows
much higher in the fall. Commercial testing for pandemic 2009-H1N1 and other viral respiratory
pathogens is not widely available or widely used, so 2009-H1N1 infection in most patients may
not be confrmed in fall 2009; as a result, diagnosis will be based empirically on clinical symptoms
and knowledge of which respiratory viruses are circulating in each community.
• Current systems cannot monitor the burden of mild illness that does not come to medical
attention. Reliable estimates of this burden are needed to understand the severity of illness—
24 24
REPORT TO THE PRESI DENT ON U. S. PREPARATI ONS FOR 2009-H1N1 I NFLUENZA
25
the more people are becoming infected without coming to medical attention, the smaller we
expect the overall burden of morbidity, mortality, and health care system stress to be for a given
prevalence of infection. At present we do not know this number.
• Current systems for reporting and analyzing adverse events associated with vaccination
may not be well suited to challenges likely to arise during a vaccination campaign for
2009-H1N1. The Working Group has identifed two concerns in this area. First, adverse event
surveillance and analysis depends to a large degree on the ability to link vaccination to pos-
sible adverse events via medical records, but the administration of vaccine in settings other
than traditional medical care may circumvent this linkage. Second, high-risk groups that are
prioritized for vaccination also are likely to experience adverse health events at high rates.
Existing systems may not be able to rigorously evaluate elevated rates of such common events
in high-risk groups, e.g., spontaneous abortions (miscarriages) in pregnant women or various
complications in neurologically impaired patients.
In a rapidly growing pandemic wave, most state and local health departments do not have the capacity
to count every hospitalization or death without depleting limited public health resources. Therefore,
more efcient and sustainable surveillance methods are necessary to obtain the key data needs during
a moderate or severe pandemic, including a qualitative assessment of local infuenza activity combined
with virologic sampling of a representative number of viral isolates.
Recommendations
It is not possible to address all of these limitations before the autumn wave of 2009-H1N1. (In Chapter
8, we recommend long-term measures to erect a comprehensive and population-based infuenza sur-
veillance system that would address data needs for decision making in seasonal infuenza and future
pandemics.)
The Working Group believes, however, that CDC can take a number of steps in the coming weeks to
signifcantly improve critical data for decision making.
Below, we suggest several specifc measures that may improve situational awareness and decision
making through the autumn wave. These recommendations attempt to balance the need for improved
data with the practical constraints of assembling systems to acquire these data in a short time frame. We
recognize that eforts to address many of these needs, and many other aspects of surveillance, are ongo-
ing; we highlight here aspects that appear to be both urgent and addressable within a short time frame.
MAIN RECOMMENDATION (CHAPTER 4)
We recommend that DHHS take rapid advantage of available opportunities to upgrade national
surveillance systems to improve decision making during the fall resurgence The critical surveil-
lance information for decision making includes data on in?uenza-like symptoms in the population,
emergency room admissions, health system utilization, hospitalized patients, and adverse events.
24 24 25
IV. ENSURI NG ADEQUATE DATA FOR DECISI ON MAKI NG: SURVEI LLANCE SYSTEMS
Needs/gaps in existing systems and possible approaches: Most states and many large cities have imple-
mented their own syndromic surveillance systems in emergency departments. These electronic systems
provide valuable information on ILI trends based on symptoms that bring patients to medical care cen-
ters. These systems often collect data within 12 to 24 hours of patient visits. However, these state and
local systems currently are not integrated, making it difcult to obtain regional or national situational
awareness of infuenza activity based on reports from individual centers.
For example, the International Society of Disease Surveillance has implemented a simple and fexible
integrated system and collects aggregate counts of ILI syndromes by age group in order to monitor
and compare ILI activity throughout the United States very quickly (e.g., see the International Society
of Disease Surveillance’s DiSTRIBuTE system). However, only nine jurisdictions (a mix of cities, counties,
and states) participate. This system could form a natural template for additional data feeds. We believe
it may be feasible to expand this or other systems in the coming weeks and we are aware of eforts by
CDC to do so.
Expected benefts: This system would provide a national picture, with some local resolution, of trends in
the numbers of patients visiting emergency departments, the percentage of such patients with ILI, and
the distribution of ILI by age. Such information would allow Federal, state, and local ofcials to obtain
a better sense of the trajectory of the outbreak (in scale, scope, and pace) in diferent regions of the
United States over time. Systems of this type already are proving useful for evaluation of local control
measures, although additional information is required to assess the severity of disease associated with
the 2009-H1N1 virus (e.g., cases requiring hospitalization or case fatality rates).
Needs/gaps in existing systems and possible approaches: Existing systems do not establish the number
of ILIs occurring in place and time as a rate per 100,000 population. This precludes estimates of severity
because the severe cases, which are better ascertained, cannot be related to overall levels of infection.
RECOMMENDATION 4-1: EMERGENCY ROOM DATA
We recommend that CDC rapidly assemble an integrated system, by combining syndromic sur-
veillance and emergency department data from existing local and state surveillance systems
into a geographically representative national network, that rapidly reports total and ILI-related
emergency visits.
RECOMMENDATION 4-2: POPULATION SAMPLING
We recommend that CDC implement a system to measure the burden of ILI on a weekly basis.
Although nationally representative data would be valuable, it may be bene?cial for these surveys
to oversample in jurisdictions that have relatively robust surveillance plans in place for tracking
in?uenza-related primary care visits, hospitalizations, and deaths in order to more accurately
monitor changes in rates of more severe illness over time.
26 26
REPORT TO THE PRESI DENT ON U. S. PREPARATI ONS FOR 2009-H1N1 I NFLUENZA
27
This may be accomplished through web-based or telephone-based surveys.
Expected benefits: These studies would provide approximate denominators of mild and medically
attended illness against which more detailed data on hospitalizations and fatalities can be compared.
Such denominators are especially important for estimating severity of infection and consequently for
predicting peak burdens on health care: for a given number of severe outcomes, the overall severity
is much less if there are many cases of mild illness or of symptoms that do not cause a patient to seek
medical attention. Data from random public surveys would reduce, although not eliminate, the uncer-
tainties cited above concerning overall severity. In addition, the surveys would provide an independent
measure of the number of people afected by illness that may be attributable to 2009-H1N1 and to the
rate of change in these numbers. The interpretation of ILI activity due to 2009-H1N1 will depend on the
proportion of 2009-H1N1 compared to other circulating respiratory viruses in each community where
surveillance is taking place. In the spring, 2009-H1N1 was more prevalent; but in the fall, other viruses
will likely be circulating, such as respiratory syncytial virus (RSV) and seasonal infuenza. Thus, these
numbers will be best interpreted in conjunction with virologic data.
Needs/gaps in existing systems and possible approaches: Hospital and intensive-care utilization are not
routinely monitored in the United States. Southern Hemisphere countries are reporting stress on ICUs
from 2009-H1N1 illness even during a period of school holidays, and the epidemic probably has not
yet peaked. As noted above, DHHS is developing the HAvBED system, which may be expanded to meet
present needs. An alternative or complementary approach may be to integrate existing state and local
systems, such as the New York State Health Emergency Response Data System (HERDS). In any system,
it would be valuable for such data to be immediately available to state and local providers. Since most
hospitals maintain such information on a daily basis, the key is to implement a simple system that allows
defned information to be regularly uploaded.
Expected benefts: Acute stress on ICUs or increased demand for ventilators may be a trigger for resource
reallocation from less afected areas and/or for intensifying community mitigation measures. Accurate
measures of health care system utilization would facilitate more efcient sharing of resources.
RECOMMENDATION 4-3: HEALTH SYSTEM UTILIZATION
Because hospital facilities may become dangerously scarce in the fall, we recommend that DHHS
implement an integrated system to monitor health care system utilization overall and attributable
to respiratory infection, with an emphasis on incidence and prevalence of cases occupying hospital
beds, ICU beds, and mechanical ventilators.
26 26 27
IV. ENSURI NG ADEQUATE DATA FOR DECISI ON MAKI NG: SURVEI LLANCE SYSTEMS
Needs/gaps in existing systems and possible approaches: There is an important gap in our ability to assess
the clinical features of pandemic infuenza infections in an ongoing way to inform treatment and pre-
vention decisions. CDC’s Emerging Infections Program (EIP) reports population rates of infection with
confrmed infuenza. These data are valuable but are limited by variation in the sensitivities of immuno-
logical and nucleic-acid-based assays and by clinician discretion regarding whether to test. Adequate
personnel and funding should be available so that EIP sites have capacity to perform PCR-based tests
(which are more sensitive) and to test systematically rather than at clinician discretion.
For clinical information, existing data streams are limited and state and local health departments are
unable to follow up most hospital admissions to determine clinical course. Such data are particularly
critical and may change over time as the pandemic progresses, either due to changing susceptibility
in the population or changes in the virus. While it is not feasible to obtain clinical information for all
hospitalized patients, sentinel hospitals or EIP sites could be used to gather detailed clinical data in
a standardized fashion. In addition to these standard data, clinical studies—for example, on optimal
management of severe cases that do not respond to antiviral therapy—will be needed, and little time
is left to ensure that they will be ready to commence early enough to have maximal impact. In addi-
RECOMMENDATION 4-4: HOSPITALIZED PATIENT DATA
We recommend that CDC de?ne a mechanism to gather timely clinical, epidemiologic, and virologic
data on a representative sample of patients hospitalized for respiratory illness and ensure that
those data are available to inform national recommendations to clinicians, public health o?cials,
and the public. Such data could be gathered by assembling a network of participating sites, such as
sites currently specializing in in?uenza surveillance; healthcare systems with appropriate electronic
record-keeping systems; and states and localities interested in participating.
The data ideally would include:
A. Results of systematic testing of patients hospitalized for respiratory infection to determine
the presence of respiratory viruses including 2009-H1N1. To improve representativeness of
data, such testing would ideally be done within a de?ned population according to prospec-
tive criteria rather than according to clinician discretion.
B. Clinical data—including age, predisposing conditions, course of hospitalization (whether
admitted to ICU or ventilated), duration of hospital/ICU stay, and resolution (death, dis-
charge), vaccine status, presence/absence of bacterial secondary infections, and identity and
timing of antibiotic and antiviral administration—should be reported for a representative
sample of hospitalized cases of 2009-H1N1 infection.
In addition, it would be valuable for CDC to de?ne explicitly the most important clinical studies
needed to guide response during the autumn wave, gain Institutional Review Board approval, iden-
tify and fund sites to perform these studies during the early autumn, and put in place a mechanism
for rapid dissemination of results
28 28
REPORT TO THE PRESI DENT ON U. S. PREPARATI ONS FOR 2009-H1N1 I NFLUENZA
29
tion, waiting for peer-reviewed results to be published will likely diminish the value of any fndings, as
a manuscript submitted in mid-September might not be published until November, after the possible
peak of the epidemic.
To address these needs, CDC should work with existing sites that specialize in infuenza surveillance, or
research centers, to prospectively monitor for changes in the clinical or epidemiologic characteristics
of the virus over time. Other states or locales that have interest and capacity to participate should be
included, when possible, to improve geographic representativeness. These “sentinel sites” should use
standardized protocols and data collection instruments to ensure that timely and up-to-date clinical,
epidemiologic, and virologic data on patients hospitalized for respiratory illness are available to inform
national recommendations to clinicians, public health ofcials, and the public. Adequate funding will
be needed to support these sites.
Expected benefts: Such data streams, and CDC’s guidance based on them, would be of primary beneft
to clinicians and to vaccine planners in targeting prevention and treatment to groups at high-risk of
severe disease. Changes in risk groups or changes in clinical spectrum (e.g., more rapid progression
to death, increasing need for ICU care or ventilation among hospitalized cases) may be early signs of
changes in the virus or in other factors, such as bacterial superinfection, that would warrant changes in
control measures or clinical management. Such changes are not observable now because of the lack of
ongoing clinical characterization of severe cases. A rapid means to disseminate clinical data and results
of key clinical studies would provide clinicians with needed information while it is most valuable.
Needs/gaps in existing systems and possible approaches: Existing VAE detection systems and surveillance
planned for the fall focus on detection of rare complications, such as Guillain-Barré syndrome. In an
atmosphere of heightened public concern, common adverse events occurring in high-risk groups likely
to be early candidates for vaccination (e.g., spontaneous abortions) may be expected to occur frequently
among early vaccine recipients, even if the vaccine is perfectly safe. A mechanism is needed to evaluate
the possible contribution of vaccine to such common adverse events to address public concerns, even
if the plausibility of such associations is low.
Major existing adverse event detection systems such as CDC’s Vaccine Safety Datalink rely on linked
medical records, including vaccination and adverse events for the same persons. If public distribution
RECOMMENDATION 4-5: ADVERSE EVENTS
We recommend that DHHS ensure the adequacy of surveillance systems and signal evaluation
systems for vaccine-associated adverse events (VAE), with particular focus on the risk of common
adverse events that are likely to occur at high rates in high-risk populations (e.g., pregnant women)
and whose association with vaccination may be di?cult to assess rapidly.
In addition, we believe it would be valuable for DHHS to assess the adequacy of existing systems
for VAE reporting to detect rare events in settings of nontraditional vaccine distribution (e.g., in
public settings, such as malls) and take steps to improve these systems where needed.
28 28 29
IV. ENSURI NG ADEQUATE DATA FOR DECISI ON MAKI NG: SURVEI LLANCE SYSTEMS
of vaccine occurs, these systems might not accurately record vaccination status, hence may be unable
to function as normal to detect and evaluate signals of adverse events.
Expected benefts: Systems to address vaccine safety are crucial to the success of any vaccination program
but will be of particular importance this fall given likely heightened awareness of such issues during a
pandemic and during a rapid mass vaccination campaign.
Conclusions
Given the short time until the expected resurgence of 2009-H1N1, it is not feasible to create entirely new
surveillance systems. Nonetheless, we believe that it may be feasible to signifcantly improve surveil-
lance capabilities by upgrading existing systems. Such improvements could have the following direct
benefts for decision making.
• Continuously updated clinical information will provide a basis for national recommendations
to physicians, with reliable data on who is at highest risk and which treatments are most efec-
tive for such patients.
• Emergency department surveillance, combined with a system to monitor demand on hospitals,
can provide a considerably stronger basis for decisions about resource allocation to overtaxed
areas and for assessing the need for enhanced community mitigation measures to slow demand
on the health system.
• Emergency department surveillance and population-based surveys will inform estimates of the
current stage of the epidemic and its trajectory.
• Adequate reporting and analysis of adverse events is crucial to ensuring vaccine safety and to
maintaining public acceptance of the vaccine.
We are aware that CDC is developing plans to expand its surveillance eforts for fall 2009 and we strongly
support such eforts.
31
31
V. Responding to the Pandemic
Introduction
Infuenza epidemics cannot be prevented with currently available tools, but four categories of methods
are available to mitigate the efects of an epidemic:
1. Vaccines to prevent infection. For seasonal infuenza, vaccines reduce the risk of serious disease
in infants and children, pregnant women, older adults, people who have chronic medical con-
ditions, or those who might infect high-risk people through their work or household contact.
CHAPTER SUMMARY
The impact of in?uenza epidemics can be mitigated by four methods: vaccination, administration of
anti-viral drugs, symptomatic medical care, and non-medical interventions that reduce viral transmis-
sion. Decisions to implement these approaches depend on a variety of factors, especially the nature and
course of the epidemic and the availability of materials, personnel, and delivery systems.
Because the in?uenza virus spreads rapidly and often e?ciently, little time is generally available to
respond once medically signi?cant outbreaks occur. It is thus critical that scenario-based plans be made
in advance for each of these interventions. It is equally important that a well-de?ned process for decision
making be established, with clear assignments of responsibility and logical, agreed-upon guidelines
for evidence-based decision making.
The Working Group was impressed with the very active engagement by many highly competent people
in multiple Federal agencies who are thinking about the decisions that need to be made. However, as
the fall resurgence nears it is especially important to be certain the roles and responsibilities of these
individuals in decision making, as well as the processes used to arrive at decisions, are clear. The Working
Group believes that it would be valuable to (1) clarify decision-making authorities and processes, and
(2) adopt a more structured decision-making framework for certain key decisions.
We recommend that the Homeland Security Advisor assume responsibility for identifying the people,
agencies, and processes for making decisions in the next phases of the 2009-H1N1 pandemic; for guar-
anteeing that all necessary decisions are made in a timely fashion; and for presenting recommended
courses of action to the President.
In addition, we examine critical issues in each of the four areas of intervention and make speci?c rec-
ommendations about the processes and information required for decision making in those areas. In
particular, we encourage the responsible agencies to focus immediately on decisions that could reduce
severe disease and death in especially vulnerable populations by accelerating the delivery and use of
vaccines, increasing the appropriate use of anti-viral drugs, and ensuring access to intensive care facilities.
Finally, we comment on the ways in which decisions made to mitigate disease in the United States might
a?ect the many other countries likely to be a?ected by the 2009-H1N1 pandemic.
32 32
REPORT TO THE PRESI DENT ON U. S. PREPARATI ONS FOR 2009-H1N1 I NFLUENZA
33
2. Antiviral drugs to decrease the likelihood of infection or severe disease in uninfected individu-
als (usually those with known or suspected exposure); to reduce the severity and duration of
disease in patients already infected and ill; and to lower the rate of virus shedding in infected
individuals, thereby decreasing the likelihood of transmission to others.
3. Medical care to manage clinical illness, which may range from mild to extreme, delivered at
home, in out-patient clinics, hospitals, and intensive care units.
4. Non-medical mitigation practices, including isolation of infected individuals, hand washing,
and several forms of social distancing such as school closures, cancellation of sporting events,
etc., to lower the chances of person-to-person transmission of virus.
Because the infuenza virus spreads rapidly and often efciently, little time is generally available to
respond once surveillance methods reveal medically signifcant information. For this reason, it is critical
that plans be made in advance for the production, acquisition, and delivery of medical interventions,
such as vaccines and drugs; the provision of facilities and materials for patient care; the mobilization
of necessary health personnel; and the communication of information about both medical and non-
medical mitigation strategies. In addition, a well-defned process for decision making needs to be
established well in advance, with clear assignments of responsibility and logical, agreed-upon guidelines
for decision making.
Responding to the anticipated 2009-H1N1 infuenza epidemic in the coming months will require com-
plex coordination—across diferent agencies of the Federal Government, vertically across the various
levels of government (Federal, state, local), between public ofcials and health professions and insti-
tutions, and between the public and private sectors. “Coordination” across agencies and participants
can be wasteful and frustrating if there are ambiguous responsibilities and unclear lines of authority.
Rather than focusing on coordination per se, it is more productive to emphasize clarity about leadership,
responsibilities, roles, and communication.
The Working Group has been impressed by the active engagement by many highly competent people
in multiple Federal agencies who are thinking about the decisions that need to be made about eforts to
mitigate the efects of the spread of 2009-H1N1 infuenza virus in the United States this fall and winter.
The Working Group has some concerns, based on conversations with representatives of the various
agencies involved, that decision-making authorities and processes may not be completely clear in all
cases. Primary Federal responsibilities for response to an epidemic are lodged in two departments (DHHS
and DHS), with signifcant involvement of others (Education, Defense, State, Agriculture, Labor), and
coordination by White House staf. While the National Strategy for Pandemic Infuenza Implementation
Plan provides a comprehensive list of assignments for a multitude of ofces, agencies, and departments
involved in the Federal planning process, the large number of tasks and responsible units tends to
obscure the primary seat of responsibility. (See www.pandemicfu.gov/plan/federal/pandemic-infuenza-
implementation.pdf.) The Working Group believes it would be valuable to clarify these matters before
events accelerate in September and assign to the Homeland Security Advisor the responsibility for
ensuring that all of the important decisions are made in a timely fashion and with appropriate consul-
tation with the President.
32 32 33
V. RESPONDI NG TO THE PANDEMI C
In addition to clarifying authorities, the Working Group believes it would be valuable to adopt structured
frameworks for making certain key decisions. At the time of our study, agencies had not yet formalized
decision frameworks but were moving to do so. We strongly endorse these eforts. We urge that they
attempt to be as precise as practical with respect to overall goals, scenario-based assumptions, required
data elements, quantitative trigger points, expected benefts, and expected costs. It would be valuable
to circulate these analyses within the government. Where feasible, it could also be desirable to share
them publicly through an appropriate channel to gain the beneft of expertise outside government;
this would be consistent with the Administration’s commitment to open government.
In the sections that follow, we discuss specifc issues that should be addressed in making decisions
about each of the categories of mitigation methods, and we ofer specifc recommendations about
how to approach those issues.
MAIN RECOMMENDATION (CHAPTER 5)
As the fall resurgence nears, important decisions will have to be made rapidly and based on limited
data. It is important to be certain that roles and responsibilities in decision making, as well as the
processes used to arrive at key decisions, are clear. The Working Group believes that the White
House is best positioned to ensure that these systems are in place, building upon the strong coor-
dination role it is already playing.
We recommend that the White House designate an individual, preferably the Homeland Security
Advisor, to be responsible for coordinating all policy development for the 2009-H1N1 response;
identifying the people, agencies, and processes for making key decisions; guaranteeing that all
necessary decisions are made in a timely manner; and presenting recommended courses of action
to the President.
Concerning decision-making authority, it will be important to identify the individual(s) responsible
for organizing the decision-making processes for each of the mitigation measures. For most key
decisions discussed in this Chapter, the responsible individual should be the Secretary of DHHS.
Concerning decision-making processes, it would be valuable to employ structured decision frame-
works incorporating scenarios—including an assessment of required data, speci?c trigger points
for action, and a forecast of bene?ts (e.g., decreased morbidity and mortality, decreased trans-
mission) and costs (e.g., ?nancial loss and social disruption). We are aware of and endorse e?orts
already underway to create such structured analyses. Such documents should be shared within
government and, where feasible, shared with experts outside government.
The most urgent attention should be given to the priority decisions necessary to support vaccine
and antiviral allocation and deployment, the national medical response, and the implementation
of non-medical mitigation strategies, as described below.
34 34
REPORT TO THE PRESI DENT ON U. S. PREPARATI ONS FOR 2009-H1N1 I NFLUENZA
35
Vaccines and Antiviral Drugs
The two main medical lines of defense are vaccination and antiviral drugs. Vaccination constitutes the
best defense against an epidemic, but its efectiveness depends on timing and coverage of the popula-
tion. Both inactivated and live attenuated infuenza vaccines are approved for use. (See Box 5A) Antiviral
drugs can provide a powerful tool for prophylaxis for exposed individuals and for treatment, especially if
used within 48 hours of the appearance of symptoms, but with possible benefts for treatment of severe
cases thereafter. Two inhibitors of infuenza neuraminidase, oseltamivir and zanamivir, are approved and
efective against 2009-H1N1 virus. (See Box 5B)
BOX 5A: INFLUENZA VIRUS VACCINES
Two types of vaccines are FDA-approved, recommended for seasonal in?uenza among the elderly
and young children, and now being manufactured at ?ve pharmaceutical companies in response
to orders from the Federal government for use in the 2009-H1N1 in?uenza pandemic.
Inactivated vaccines are the most widely used. They are prepared by growing viruses in embryo-
nated chicken eggs and then inactivating them by treatment with ethyl ethers or detergents.
Inactivated vaccines contain all the viral structural proteins and are administered via injection, usu-
ally in a single 15 microgram dose that is made available in multi-dose vials or single-dose syringes.
Live attenuated vaccines are made from cold-sensitive variants of the virus that are also produced
in chicken eggs, partly puri?ed, and administered to the nasal mucosa, usually with a nasal spray
device.
Other approaches to making in?uenza vaccines by growth of virus in cell culture or by recombinant
DNA methods are being studied and are described in Chapter 8. In addition, it may be possible to
augment the e?ectiveness of in?uenza vaccines through the use of adjuvants, substances that
stimulate the immune response to viral proteins. Use of adjuvants with in?uenza vaccines has not
yet been approved by the FDA, but is permitted in Europe. Depending on the outcome of clinical
tests, adjuvants could be added to 2009-H1N1 vaccines under the terms of an Emergency Use
Authorization (EUA) from the FDA.
34 34 35
V. RESPONDI NG TO THE PANDEMI C
The Working Group has identifed several important decisions that need to be taken—immediately
in some cases, rapidly in all cases—if these two mitigation measures are to be employed to maximum
efect this fall:
(1) Accelerate vaccine production. The expected timing of vaccine availability poses signifcant chal-
lenges, as seen from the following considerations:
• Although revisions of the schedule are under consideration by DHHS, plans announced in July
by the HHS Secretary would provide the frst signifcant quantities of 2009-H1N1 vaccine in
mid-October; an efective immune response would take another 2 to 4 weeks to develop after
vaccination. Under the model scenario described in Chapter 3, the resurgence of the epidemic
would start in September and peak in mid-October. If this model is approximately correct with
respect to timing, a vaccination campaign would not begin to protect vaccinees until well after
the epidemic had peaked.
• Certain groups are already known or suspected to be at high risk for serious complications and
death from 2009-H1N1, and are likely to account for a signifcant minority of serious morbidity
and mortality. Based on current information, groups at relatively high risk include pregnant
women, individuals with certain neurological impairments, asthmatics, and others (see Chapter
3). In addition, high numbers of severe cases and deaths were observed among children and
young adults. These groups would disproportionately beneft from early access to vaccine.
BOX 5B: ANTIVIRAL DRUGS FOR INFLUENZA
Two classes of antiviral drugs have been developed and approved for use in the treatment of
in?uenza.
One class, the amantadines, blocks the virus life cycle by interfering with a small viral protein
called M2. This class of drug is not e?ective in the treatment of either 2009-H1N1 virus or the cur-
rent seasonal in?uenza viruses and is thus not considered further here.
The second class, the neuraminidase inhibitors, includes two agents—oseltamivir (TamiFlu,
taken orally) and zanamivir (Relenza, inhaled)—that are FDA-approved and widely used as pro-
phylaxis against disease (among those known or likely to be exposed to infected individuals) and
as treatment (for patients diagnosed with in?uenza). Treatment is most successful when begun
soon after infection; the agents also reduce the amount of infectious virus produced by infected
individuals. The drugs are often used in the management of severe in?uenza, but intravenous
delivery of these two agents, or of a third agent (peramivir), in advanced stages of development,
has not yet been approved by the FDA. Resistance to these agents, especially oseltamivir, as a result
of viral mutation or genetic recombination, can be a major factor limiting antiviral e?ectiveness;
seasonal in?uenza viruses increasingly show resistance to oseltamivir, but thus far only a few of
the many isolates of 2009-H1N1 virus have shown resistance to oseltamivir.
36 36
REPORT TO THE PRESI DENT ON U. S. PREPARATI ONS FOR 2009-H1N1 I NFLUENZA
37
Given these circumstances, it is important to consider options for accelerating the availability of vac-
cine supplies, at least for individuals at elevated risk, estimated to represent nearly 40 million in the U.S.
Currently, vaccine availability is gated by results of clinical studies concerning safety and optimal dose
(expected in mid-September), after which manufacturers can “fll and fnish” the vaccines at the appro-
priate doses (which requires another 3–4 weeks). Inactivated vaccine for seasonal infuenza is usually
administered at a dosage of 15 micrograms; a similar dosage is expected to work for the 2009-H1N1
vaccine, but this will not be known with certainty until results from clinical studies are available.
We thus recommend a “hedged” strategy in which an initial amount of product is packaged “on risk,”
assuming a 15 microgram dosage, and the remainder is packaged when dosing and safety information
becomes available in mid-September following the frst results of clinical trials conducted by the NIH and
industry. The risks of this course of action appear to be relatively low: some vaccine product could be
wasted by flling vials at sub-optimal doses. If a somewhat larger dose is required, however, physicians
can administer additional vaccine (e.g., a second dose of 15 micrograms to achieve 30 micrograms).
The optimal amount of vaccine will need to be determined from immunological responses in clinical
tests and an appropriate decision analysis. However, it seems clear that flling and fnishing up to 40
million doses could have a substantial efect on the incidence of disease and death in these vulnerable
populations.
The Working Group recognizes that there are important considerations for manufacturers as they con-
template reconfguring their “fll and fnish” operations to meet accelerated deadlines. If DHHS elects
to follow this approach, a highly knowledgeable Federal decision-maker would need to work promptly
with one or more of the pharmaceutical companies already contracted to produce vaccine to execute
this strategy.
We note that the National Biodefense Science Board has also encouraged accelerated production and
that the strategy is under consideration by the relevant DHHS agencies.
(2) Focus on protecting those at highest risk. Because the most severe outcomes appear to be con-
centrated in certain groups, based on data thus far with 2009-H1N1, it is logical to assume that focus-
ing mitigation eforts on those groups will have disproportionate public health benefts. In addition to
accelerating the availability of vaccine, it is important to develop clear guidance about the means of
access and appropriate use of vaccines and anti-viral drugs for these groups and to communicate that
guidance to them and their health care providers promptly and efectively (discussed in Chapter 7). We
note that the complex and distributed nature of the U.S. healthcare system poses logistical challenges
in accomplishing these goals, which will require considerable planning.
RECOMMENDATION 5-1: ACCELERATING VACCINE AVAILABILITY FOR
HIGH-RISK GROUPS
We recommend that DHHS accelerate the availability of a portion of the vaccine supply to mid-
September by having manufacturers begin to “?ll and ?nish” a subset of the bulk vaccine product
at 15 micrograms. Such a decision would need to be taken almost immediately.
36 36 37
V. RESPONDI NG TO THE PANDEMI C
This strategy will require attention to important questions about the specifc recommended interven-
tions, both medical and non-medical. To cite just one example, what guidance concerning antiviral
prophylaxis should be given to a pregnant schoolteacher whose class has two students who are at home
after contracting symptoms of 2009-H1N1 infuenza?
(3) Manage anti-viral stockpiles. The United States currently has Federal and state stockpiles of approxi-
mately 90 million courses of antivirals (consisting of roughly 80 percent oseltamivir and 20 percent
zanamivir). Each course represents one week of treatment; an individual taking prophylaxis for three
months would thus consume 12 courses. There is little or no additional supply available for purchase
through the end of 2009. The existing stockpile must thus be used prudently.
The Working Group has heard concerns expressed that there is a risk of depleting the stockpile if it is not
managed properly (for example, if used for widespread and prolonged prophylaxis of health care workers
or the general public). It is important that antiviral drugs be available for treatment and for prophylaxis
for those at greatest risk of serious illness (prioritized groups directly exposed to virus). Once antiviral
drugs are released from the national stockpile, the states and localities control their use. Still, CDC has
an important infuence through its guidelines on the use of these drugs. The Working Group heard con-
cerns that the existing CDC guidelines may not be sufciently strong and clear to promote optimal use.
RECOMMENDATION 5-2: PROTECTING HIGH-RISK GROUPS
We recommend that DHHS undertake a focused program to identify and maximize protection of
individuals at high risk of severe outcomes if infected with 2009-H1N1.
This process should include:
A. reviewing existing knowledge about nH1N1 hospitalizations, ICU admissions and deaths to
strengthen the list of groups at highest risk for these events;
B. developing plans to mobilize these groups (and their health care providers), generate guid-
ance for members of these groups to follow in deciding when to use such medication, and
dispense antiviral drugs when indicated;
C. using these mobilization strategies to reach the same groups for vaccination, and begin
o?ering vaccine as soon as supplies become available; and
D. considering plans to o?er existing vaccines against other respiratory pathogens to members
of such groups (severe consequences of in?uenza virus infection often result from secondary
infection, such as pneumococcal pneumonia).
38 38
REPORT TO THE PRESI DENT ON U. S. PREPARATI ONS FOR 2009-H1N1 I NFLUENZA
39
(4) Intravenous antivirals. Severely ill patients may beneft from the intravenous use of neuraminidase
inhibitors. (For example, in the model scenario described in Table 3-1, as many as 300,000 patients are
envisioned to require treatment in an ICU). However, no antiviral drugs have been approved by FDA for
intravenous use. There are some initial clinical data on intravenous use of the approved drugs oseltamivir
and zanamivir and more advanced clinical data for peramivir, a new drug with a somewhat diferent
resistance profle than oseltamivir. The Working Group urges FDA to work with drug manufacturers to
determine whether these drugs can be used intravenously as a result of accelerated approval or under
the terms of an Emergency Use Authorization (EUA).
(5) Trigger for using adjuvant. The efectiveness of vaccines can often be increased by co-administra-
tion with adjuvants, substances that can amplify an immune response when mixed with an appropriate
antigen, allowing the dosage of antigen to be decreased. Thus a given amount of antigen can be used
to immunize more individuals. This strategy may be important if a vaccine is poorly immunogenic (and
thus requires a large quantity of antigen) or if vaccine supplies are insufcient to fll an urgent national
need. A supply of one adjuvant (MF59) has been ordered and stockpiled for possible use with the 2009-
H1N1 vaccine.
Adjuvants are not currently approved for use with infuenza vaccines in the United States, although
they have been approved and are being used with infuenza vaccines in Europe. Accordingly, the use
of adjuvants would require an EUA by the FDA. Given these circumstances, there is reluctance to use
adjuvants unless they are clearly necessary to extend the vaccine supply.
The Working Group encourages DHHS to develop quantitative criteria (vaccine efcacy, severity of
epidemic) that would trigger a decision to use adjuvants and to ensure that sufcient data are available
for the FDA to grant an EUA.
(6) Plan for a national vaccination campaign. A decision to vaccinate portions or the entirety of the
U.S. population against infuenza virus is an important step, but the public health consequences of that
RECOMMENDATION 5-3: ANTIVIRAL DRUGS
We recommend that CDC clarify and strengthen its guidelines for use of antiviral drugs, including
for treatment, pre-exposure, and post-exposure prophylaxis, and contingency plans for the devel-
opment of drug resistance. These guidelines and plans, and their rationales (including preservation
of limited supply for those in greatest need), should be clearly communicated to state and local
health departments, health care practitioners, and the public. State and Federal supplies of antiviral
drugs should be monitored on a frequent basis.
RECOMMENDATION 5-4: INTRAVENOUS ANTIVIRALS
We recommend that FDA accelerate a decision about the availability of antiviral drugs (peramivir,
zanamivir, or oseltamivir) for intravenous use.
38 38 39
V. RESPONDI NG TO THE PANDEMI C
decision depend heavily on the manner in which the decision is announced, the recommendations
that are made about who should receive vaccine, and the system(s) chosen to distribute and deliver
the vaccine. Without those additional steps, actual use of the vaccine may be low or the vaccine may
be used inappropriately. The Working Group encourages DHHS to accelerate the planning required
for an efective campaign, taking into consideration some of the recommendations about commu-
nication practices ofered in Chapter 6. The ACIP has already proposed to CDC that up to 160 million
people should be considered preferentially for vaccination against 2009-H1N1 virus, and a subset of
those individuals should be prioritized according to criteria mentioned earlier in this chapter. Plans for
a national campaign will need to incorporate appropriately those priorities and target messages about
the vaccine. The complex and distributed nature of the U.S. healthcare system makes a coordinated
national efort particularly challenging; considerable attention will need to be focused on the many
logistical challenges.
(7) Surveillance of vaccine efectiveness and vaccine-associated adverse events. Clinical testing of
an infuenza vaccine allows scientists to determine whether that vaccine produces a measurable immune
response that has been correlated with some degree of clinical protection. However, it does not directly
determine whether the vaccine elicits protective immunity against infection that is a conclusion that
can only be frmly drawn by studying groups of vaccinated and control individuals over longer periods
of time. Furthermore, initial clinical tests usually are conducted with small groups of healthy individuals,
so rare adverse events and complications associated with pre-existing medical conditions are unlikely
to be encountered. In view of these circumstances, it will be important that CDC, FDA, and NIH develop
a collaborative plan to monitor appropriately designated groups of vaccinees, based on age, location,
or pre-existing conditions, to assess the efectiveness of the vaccines and study any adverse reactions.
These observations will be especially useful if a virus closely related to 2009-H1N1 returns in future years
Medical Response
As discussed in earlier chapters, even in the absence of changes in the characteristics of the 2009-H1N1
virus, the capacity of some communities to provide an appropriate medical response to ill patients is
likely to be strained and possibly overwhelmed at the peak of the anticipated fall outbreak. It is impos-
sible to predict where and when this will happen, so it is important that all communities be prepared
for this possibility. During spring and summer 2009, the 2009-H1N1 pandemic has stressed the health
care system in several countries, including parts of the United States, Argentina, Canada, Chile, and
Mexico, and this has provided an opportunity to learn from the health system response in these places.
Given the structure of the U.S. health care system, the response to these “surge” requirements will be
addressed at the local, state, and regional levels, with the majority of capacity coming from private and
non-proft facilities that are outside of government. Nevertheless, the Federal Government will play
a critical supporting role in this response—by providing guidance to communities on strategies that
address the medical requirements; by relaxing legal and regulatory constraints; by mobilizing Federal
personnel to assist in the response; and, in some cases, by providing medical materiel from the Strategic
National Stockpile. Furthermore, while the Working Group recognizes that the potential inadequacy of
the Nation’s medical “surge” capacity cannot be closed in the immediate future, we believe that use of
40 40
REPORT TO THE PRESI DENT ON U. S. PREPARATI ONS FOR 2009-H1N1 I NFLUENZA
41
existing capacity can be improved and made more equitable by expanded monitoring and allocation
of scarce resources (such as ICU beds and ventilators) used to care for the most critically ill patients, as
described in Chapter 4 (see Recommendation 4-4) and by the development of procedures to mobilize
equipment, personnel, or patients.
RECOMMENDATION 5-5: MEDICAL RESPONSE
In its e?orts to prepare the Nation’s complex health care system for the likely increase in cases
of severe 2009-H1N1 in?uenza, we recommend that DHHS emphasize the following approaches:
A. Using planning scenarios, forecast requirements for hospital beds, ICU beds, personnel,
equipment, and medical materiel to inform state and local authorities in their planning
e?orts. Special attention should be given to the capacity to care for critically ill infants and
children, as most adult ICU facilities are not fully equipped to handle these patients, and
potentially high-risk populations for whom the Federal Government has speci?c responsibili-
ties, such as American Indians/Alaska Natives. Guidance should be o?ered on (1) strategies
and best practices to close critical gaps, and (2) Federal resources available to assist in this
e?ort (e.g., through the Strategic National Stockpile).
B. Use national surveillance systems, in collaboration with state health authorities, to maintain
up-to-date situational awareness of the medical response across the country, as recom-
mended in Chapter 4 (see Recommendation 4-4). These e?orts should aim to determine
which locations are under the greatest duress; track clinical presentation of infection and
e?ectiveness of interventions; and understand which medical surge strategies are most
e?ective.
C. Determine the authorities, protections, and guidelines necessary to maximize a community’s
ability to allocate scarce resources in the most appropriate, ethical, and just manner, without
fear of inappropriate penalties. The intent is to ensure uniformity in the allocation of scarce
and perhaps life-saving medical resources, such as ventilators, across communities.
D. Consult with relevant professional societies and health care organizations to ensure that
guidance for protection of health care workers from the e?ects of 2009-H1N1 is supported
by the evidence, feasible to implement, and is harmonized among multiple sources. Relevant
societies include the Society for Healthcare Epidemiology of America (SHEA), the Infectious
Diseases Society of America (IDSA), and, where recommendations concern children, the
American Academy of Pediatrics (AAP).
E. Work closely with state and local health personnel to prepare the public to self-triage and
manage illness at home or at alternative care facilities when appropriate, using scalable solu-
tions such as national toll-free phone lines and web-based instructions where appropriate
(as discussed further in Chapter 6).
40 40 41
V. RESPONDI NG TO THE PANDEMI C
Non-medical Mitigation Measures
The Federal Government’s planned response to a pandemic virus includes community mitigation
measures, including “social distancing,” cancellation of public gatherings, voluntary home quarantine,
and school closure. Implementation of these measures has been linked to the severity of the pandemic,
which the Federal Government has codifed through a “Pandemic Severity Index” or PSI. The PSI for the
2009-H1N1 pandemic proved to be very difcult to assign early in its course in North America: the PSI
depends primarily on the “case fatality rate,” which cannot be calculated with certainty when the total
number of infected persons is unknown. Implementation of the more signifcant interventions, such as
school closure, has proved to be controversial, due to a perceived imbalance between the negative fnan-
cial and social consequences of the intervention relative to the perceived mildness of the pandemic virus.
Valuable lessons about community mitigation have been learned in the United States, the United
Kingdom, Japan, Mexico, and elsewhere since the emergence of the 2009-H1N1 virus, and have also
been gleaned from historical accounts of past epidemics. The Working Group believes it is essential to
capitalize on these lessons and ensure that communities are prepared to implement appropriate com-
munity mitigation measures depending on the course of the pandemic this fall.
The importance of such preparations is underscored by the following observations: (a) it is possible that
the virulence of the virus could increase in subsequent waves, as happened in 1918–19; (b) even at the
current level of virulence, the demand on the health care system in some communities is likely to exceed
available capacity, necessitating measures to slow the spread of the virus; (c) the sheer number of cases
in a given community, along with concern among the public, may lead to unplanned school closure and
absenteeism in the workplace; and (d) it is unlikely that signifcant proportions of the population will
have vaccine-mediated immunity at the time the 2009-H1N1 virus returns to a given community this fall.
The Working Group recognizes that many components of the Federal Government, including DHHS/
CDC, NSC, and the Departments of Labor, Homeland Security, State, and Defense are engaged in discus-
sions of non-medical mitigation methods and that national guidance is being developed. We suggest
that adequately resolving these issues will require a greater quantitative specifcity, in particular, of
the trade-ofs between the medical beneft gained and social disruption caused by school or institu-
tional closure. The costs and benefts of these measures have not, to our knowledge, been adequately
weighed in quantitative terms. For example: although there is signifcant evidence, as well as logic, to
support the idea that school closure (and presumably similar social distancing actions) can reduce virus
transmission, clear analyses are needed of what specifc efects on the spread of infection in diferent
types of communities are likely to result from school closures at diferent infection prevalence. Even
more difcult to assess are the economic and social costs of implementing such measures. Although
evidence-based estimates of such costs are difcult to make and inherently imprecise, they can help to
advance the rationality of the debates, especially if performed in the context of specifc scenarios for
the severity of an epidemic.
Finally, we note that there currently appears to be no value in using border closures or travel restric-
tions as social mitigation measures, as the H1N1 infuenza virus is already well-established in the U.S.
This situation could change if a more virulent or drug-resistant variant of 2009 H1N1 in another country
became a serious threat.
42 42
REPORT TO THE PRESI DENT ON U. S. PREPARATI ONS FOR 2009-H1N1 I NFLUENZA
43
International Considerations Presented by the Pandemic
In preparing for the resurgence of the 2009-H1N1 epidemic, protecting the U.S population is the Federal
Government’s primary responsibility. In addition, the Federal Government is concerned about the impact
of the pandemic on other countries in terms of health efects (diseases spread rapidly across borders
and epidemics do not end until they subside everywhere); economic consequences (pandemics can
disrupt the global economy, trade, tourism, political stability, and foreign policy); and, importantly,
humanitarian reasons (rooted in deeply held national values).
There is reason to believe that under-resourced countries may be at special risk during infuenza epi-
demics. For instance, a recent study projected that, if a 1918–19-like pandemic were to happen today,
RECOMMENDATION 5-6: NON-MEDICAL INTERVENTIONS
We encourage CDC, working with other components of DHHS, the Departments of Education,
Homeland Security, Commerce, Labor, and others as appropriate, to prepare a document that
provides general guidance on non-medical interventions to mitigate the predicted recurrence of
the 2009-H1N1 pandemic in the United States. This document could be the basis for communication
of key messages to several di?erent constituencies, including local governments, school o?cials,
leaders of institutions and businesses with high concentrations of personnel, and organizers of
various kinds of public events, and it should include several important components:
A. A description of the lessons that have been learned about community mitigation measures
as a result of the experience in the United States, Japan, Mexico, and other places where
these measures were implemented during the 2009-H1N1 pandemic, as well as a summary
of lessons from earlier epidemics.
B. An account of the second- and third-order consequences of measures such as closure of
schools and other institutions or cancellation of public events, and strategies to limit their
impact.
C. An articulation of the goals of community mitigation measures if implemented (e.g., reduc-
tion in community-wide transmission, reduction in peak burden on health care system, pro-
tection of those most at risk for severe complications, reactive in response to absenteeism)
under various scenarios, and the impact this would have on implementation.
D. Triggers for implementation and adjustment of community mitigation strategies, based on
data that are likely to be readily available to decision-makers. These plans should include
strategies for communicating the recommendations to the public and state and local stake-
holders, as discussed in Chapter 6.
E. Methods for monitoring the e?ectiveness or ine?ectiveness of these interventions during
the expected fall outbreak, both to guide continued use in the fall and to gather knowledge
for use in future in?uenza outbreaks.
42 42 43
V. RESPONDI NG TO THE PANDEMI C
96 percent of the deaths would occur in the developing world. Given the relatively young demographic
profle, the widespread prevalence of co-morbidities such as malnutrition, HIV/AIDS, and tuberculosis,
and the fact that many of these countries do not have functional health systems, the 2009-H1N1 pan-
demic could have a devastating impact on developing nations. Serious outbreaks already have been
observed in underserved populations in the developed world. For example, aboriginal populations of
Manitoba, which represent 10 percent of the population, appear to have accounted for 30 percent of
cases of 2009-H1N1 infuenza in the province so far and the majority of 2009-H1N1-infected patients
requiring intubation in ICUs in Winnipeg.
While recognizing that issues with basic health infrastructure in developing countries cannot be rem-
edied in the short run, the availability of materials—including 2009-H1N1 vaccine, antiviral medications,
antibiotics, personal protective equipment, and other essential medical materials—may help mitigate
the impact of the epidemic. Unfortunately, global supplies of the most important of these items—vac-
cines and antiviral medications—are expensive and severely constrained; thus, large quantities are
unlikely to be readily available to developing nations. The vast majority of production capacity for 2009-
H1N1 vaccine, for instance, already has been reserved by industrialized countries.
Since 2005, the United States has taken a number of steps, often in conjunction with WHO, to support
global pandemic preparedness, including the open sharing of information about novel infuenza viruses
and establishing capacity in developing countries to rapidly detect and respond to infuenza viruses
with pandemic potential (see Box 5C).
BOX 5C: SAMPLING OF U.S. ACTIONS TO SUPPORT GLOBAL PANDEMIC
PREPAREDNESS
• Sharing viral isolates, sequence information, and technical expertise with WHO and regional
and national laboratories;
• Providing technical assistance to support country-level pandemic planning over the past
several years, including adaptation of community mitigation strategies to developing world
contexts;
• Providing technical assistance to support in-country public health and medical responses,,
including adaptation of clinical guidelines and implementation of medical surge plans;
• Providing resources to WHO, as well as personnel and technical assistance;
• Supporting the WHO Global Access Plan to establish vaccine production capacity in develop-
ing countries and the WHO-managed stockpile of antiviral medications;
• Providing extensive support of in-country laboratory and surveillance e?orts; and
• Supporting the response to 2009-H1N1 in?uenza in Mexico this spring, including a donation
of 400,000 courses of oseltamivir.
44 44
REPORT TO THE PRESI DENT ON U. S. PREPARATI ONS FOR 2009-H1N1 I NFLUENZA
45
Mindful of the urgency of protecting the U.S. population, the Working Group nonetheless believes that
the United States can play an important role in eforts to reduce the impact of the 2009-H1N1 pandemic
in developing countries, both independently and in collaboration with other countries and WHO. We
recognize that the current lack of a U.S. Agency for International Development (USAID) Administrator
and a Director of the Ofce of Global Health Afairs at DHHS has limited the institutional capacity to
work on these issues. Nonetheless, we believe these issues should be addressed.
An Improbable Scenario Requiring More Stringent Non-Medical Measures
The 1918–19 pandemic was characterized by a relatively mild frst wave of illness in spring 1918, fol-
lowed by much more severe second and third waves. This pattern could conceivably be repeated with
the 2009-H1N1 virus, leading to a far greater strain on communities than described in Chapter 3 or cur-
rently anticipated by the Federal Government. While the Working Group views this specter as highly
unlikely and inappropriate as a driver of Federal preparedness eforts, the possibility of such a “step
change” in the severity of the pandemic (e.g., to “Category 5” in the current Pandemic Severity Index)
cannot be entirely ignored. If it should occur, the Federal Government would be confronted with a
national crisis and the prospect of hundreds of thousands of deaths, millions of hospitalizations, and
a dramatic impact on the functioning of communities due to school closure, workplace absenteeism,
and fear-driven changes in people’s behavior.
Such an event would stress the Federal Government in ways that are not discussed in this report.
The Federal Government may be unable to respond to the number and scope of requests for Federal
assistance from state and local authorities, whether for support of the healthcare infrastructure or the
preservation of law and order. Communities may be unable to provide medical care to everyone in
need, raising the prospect of rationing of services and mortality that would otherwise be preventable.
RECOMMENDATION 5-7: THREE ACTIVITIES TO REDUCE THE IMPACT
OF THE EPIDEMIC ON DEVELOPING COUNTRIES
A. Take action to produce, purchase, or redirect vaccines, antiviral drugs, antibiotics, and medi-
cal materiel to developing countries in need of such support;
B. Use the in?uence of the United States, in collaboration with WHO, to convince other devel-
oped nations to pay close attention to the needs of developing countries during the pan-
demic and to encourage manufacturers to make vaccines and drugs available under donation
and/or tiered-pricing schemes to those developing countries that have the plans and the
capacity to use them e?ectively, and in the same time frame as these materials are made
available to developed countries;
C. Incorporate the international consequences of mitigation plans into Federal decision-making
processes for the pandemic—for example, by recognizing that e?orts to conserve antigen by
use of adjuvants in vaccines or to conserve antiviral drugs by restriction on inappropriate use
could liberate valuable materials for use in poor countries severely a?ected by the epidemic
44 44 45
V. RESPONDI NG TO THE PANDEMI C
Federal, state, and local authorities may take unilateral action such as border closure, seizure of essential
commodities, or curtailment of individual freedoms, out of fear or as a result of public pressure.
Under these circumstances, it would be necessary for the Federal Government to have streamlined
mechanisms for decision making and coordination of the national response. The capability for such
coordination extends well beyond the processes described earlier in this chapter, and falls into the realm
of “national incident management.” The Federal Government has spent a great deal of time develop-
ing systems for such coordination; the National Response Framework and associated documents are
the result of that work. But these systems have never been tested by an event of the scope and scale
described here. For this reason, it is essential that the Administration examine these systems of coor-
dination and the roles and responsibilities of all players—particularly the Departments of Homeland
Security, Health and Human Services, Justice, Defense, State, and Education—to ensure that the Federal
response can be scaled to the magnitude of the health crisis as warranted by the circumstances.
47
47
VI. Lowering Financial and Regulatory
Barriers to Efective Response
Introduction
As discussed in previous chapters, infuenza epidemics can be mitigated through medical and non-
medical interventions. To achieve their full beneft, such actions require the compliance of individuals
and organizations in many sectors, as well as adequate funding. The purpose of this chapter is to identify
the potential social, fnancial, and regulatory barriers to compliance and to recommend ways to lower
those barriers. Because the list of barriers and solutions below is likely to be incomplete, it would be
valuable for the Administration to undertake a systematic analysis of these issues.
CHAPTER SUMMARY
Legal, social or ?nancial obstacles may prevent institutions and individuals from taking useful actions
to confront an epidemic.
In this chapter, the Working Group describes several such barriers to e?ective actions and proposes
ways to overcome them in times of public health emergencies by providing funds, suspending certain
medical regulations, reducing ?nancial impacts on hospitals, using special authorities, and encouraging
action in the private sector.
We also recommend that the National Security Council, led by the Homeland Security Advisor, undertake
a systematic review of potential legal, social, and ?nancial barriers to action, to determine which might
reasonably be ameliorated during the time of the anticipated epidemic and to set plans in motion to
reduce or remove such barriers in accord with the observed severity of the epidemic.
MAIN RECOMMENDATION (CHAPTER 6)
The e?ectiveness of mitigation e?orts can be improved by (a) identifying potential legal, social, and
?nancial barriers to action in the face of an in?uenza pandemic; (b) developing speci?c solutions
and identifying triggers for implementing these solutions when feasible; and (c) ensuring that
relevant actors know about the intentions to deploy the solutions. We describe several potential
barriers, propose some solutions, and suggest that barrier-reducing activities be led by the National
Security Council and the Homeland Security Advisor.
48 48
REPORT TO THE PRESI DENT ON U. S. PREPARATI ONS FOR 2009-H1N1 I NFLUENZA
49
Emergency Funding for Federal, State and Local Actions
Responding to any widespread health emergency, such as an infuenza epidemic, requires substantial
resources from public and private sources, and the current economic recession is a potentially limiting
factor in the provision of such funds.
The President and Congress have already taken commendable action through the Supplemental
Appropriations Act, 2009 (P.L. 111-32), to provide fnancial support for eforts to control the current
2009-H1N1 pandemic by securing emergency response funds and allocating a substantial portion to
support mitigation methods, as described in Chapter 1. We presume that the Ofce of Management
and Budget will continue to closely monitor Federal expenses for infuenza mitigation, so that additional
emergency appropriations can be sought if necessary.
Using these funds, the Federal Government also has taken an important step to help already overbur-
dened state and local public health organizations respond to the pandemic by providing $350 million
from the emergency appropriation, through DHHS, to state and local governments and hospitals.
It is likely that additional funds will be required for various activities. In Chapter 4 we discuss the impor-
tance of enhancing surveillance systems—for example, to enlarge the capacity to diagnose 2009-H1N1
infection. In many states, public health laboratories are the only facilities ofering this testing. If such
laboratories are overwhelmed, key decisions about prophylaxis, treatment, and school closure may be
delayed by diagnostic uncertainty. More funds would likely be required for such laboratory expansions.
Lowering Barriers to Hospital Care
Hospitals may face regulatory and economic disincentives to care for patients acutely ill with infuenza.
In large outbreaks, hospitals—and in particular their pediatric wards, emergency departments, and
ICUs—may quickly become overwhelmed. This may lead to the need for alternative care sites such
as schools, hotels, stadiums, recreation centers, and churches. In addition, as we have already seen in
other developed countries coping with infuenza outbreaks this year, hospitals may need to reduce
the number of beds available for elective surgeries and other activities that provide a major source of
revenue. Further, overcrowded ICUs may require hospitals to transport some patients outside of the
immediate area. Because rates of hospitalization for 2009-H1N1 are highest in children, hospitals can
also anticipate needing more pediatric equipment than is typically available.
RECOMMENDATION 6-1: DHHS MONITORING
We recommend that DHHS monitor the financial situation of state and local governments to
determine whether they have su?cient ?nancial resources and personnel to carry out necessary
surveillance (including monitoring trends in respiratory virus activity and at least a minimal level
of viral surveillance) and to respond to the public health situation, which may vary from one juris-
diction to another.
48 48 49
VI. LOWERI NG FI NANCIAL AND REGULATORY BARRI ERS TO EFFECTIVE RESPONSE
To respond appropriately to these pressures, hospitals may require relief from certain regulatory provi-
sions that normally limit the number of severely sick patients who can be seen; require that all patients
be subjected to routine tests or procedures that may be irrelevant during a pandemic; or prevent the
rapid triaging of patients who are only mildly ill.
Two actions typically are necessary for these usual assurances to be waived. First, the DHHS Secretary
must declare a Public Health Emergency. When this action is taken, the Secretary can gain access to a
special fund called the Public Health Emergency Fund. (We note, however, that this access is currently
since Congress has not appropriated any public monies to the Fund.) Second, the President must make
a declaration under the Staford Act or National Emergencies Act. When both of these actions have been
taken, DHHS can waive or modify a number of administrative requirements of the Emergency Medical
Treatment and Active Labor Act (EMTALA), Medicare, Medicaid, and the Children’s Health Insurance
Program (CHIP). For example, the Secretary can waive conditions of participation or certifcation require-
ments, allowing health providers to ofer care even if not licensed by their state to do so. In addition, an
“1135 waiver” of EMATLA could enhance the ability of hospitals to respond to a pandemic by allowing
• Diversion of less ill patients from emergency departments to alternative care sites for triage and
treatment without being subject to penalties and fnes;
• Provision of emergency care for patients regardless of their ability to pay; and
• Earlier care of patients in emergency departments, by eliminating the requirement for a medical
screening exam before evaluation by a health provider.
During the spring 2009-H1N1 outbreak, a Public Health Emergency was declared nationwide but the
Staford Act was not invoked. Because both actions are required for DHHS to issue an 1135 waiver, hos-
pitals were not authorized to divert individuals to of-site alternate care sites, even if their emergency
departments were overwhelmed. In addition, the Public Health Emergency Fund, though authorized,
is currently unfunded.
In addition to regulatory barriers, hospitals face signifcant fnancial disincentives for vigorous planning
and implementation of appropriate disaster operations. For example, a resurgence of 2009-H1N1 may
fll large numbers of hospital beds with individuals who are in need of expensive care but are either
RECOMMENDATION 6-2: PUBLIC HEALTH EMERGENCY
We recommend that if the Secretary of DHHS declares a Public Health Emergency, the President
consider issuing a Sta?ord Act declaration so that hospitals can more e?ectively triage and treat
patients.
Alternatively, the Administration could ask Congress to amend the Social Security Act preemptively
so that the ability to issue 1135 waivers is linked automatically to the declaration of a Public Health
Emergency.
In addition, we recommend that Congress provide funding for the Public Health Emergency Fund.
50 50
REPORT TO THE PRESI DENT ON U. S. PREPARATI ONS FOR 2009-H1N1 I NFLUENZA
51
uninsured or have insurance that will reimburse the hospital at unfavorable rates. Moreover, a 2009-
H1N1 resurgence could preoccupy hospital personnel; trigger expensive contagion control procedures;
and force the postponement of more proftable cases or their diversion to other providers. All of these
factors can have a detrimental efect on hospital fnances. Hospitals also may need to rely upon alterna-
tive care sites and standards, which may not be subject to the usual reimbursement rules, raising the
potential for non-reimbursed care.
Non-medical Mitigation Activities
A key element in mitigating the spread of an epidemic is compliance with social distancing measures—
for example, staying home from work or school or avoiding public gatherings such as concerts or
sporting events when ill. However, compliance is unlikely when economic or other disincentives punish
individuals for these behaviors. It is critical that appropriate Federal ofcials take the lead in identifying
these disincentives and removing or minimizing them. Since immunizing large segments of the popula-
tion likely cannot be completed before late November or early December, the use of social mitigation
measures may represent the most efective means for reducing transmission of virus in the fall when it
is spreading most efciently.
Because crowding in schools is extreme and prolonged and because the risks of infection with 2009-
H1N1 to the relevant age groups are high, special consideration should be given to ways to encourage
potentially infectious students to remain at home rather than attend school.
RECOMMENDATION 6-3: EXAMINATIONS AND REIMBURSEMENT
We recommend that DHHS’s Centers for Medicaid and Medicare Services (CMS), which reimburse
hospitals for care provided through Medicare, Medicaid, and the Children’s Health Insurance
Program (CHIP), examine the ?nancial implications for hospitals of actions they might take in
responding to the pandemic. Such an analysis should examine the economic implications of
hospital reimbursement for the care of 2009-H1N1 patients in conventional and alternative care
sites, while also considering the ?nancial losses that hospitals might incur by deferring elective
procedures.
50 50 51
VI. LOWERI NG FI NANCIAL AND REGULATORY BARRI ERS TO EFFECTIVE RESPONSE
Individuals sick with 2009-H1N1, and those who need to care for afected family members, face a loss of
income or employment if they stay home from work. Similarly, holders of tickets for travel or sporting
events face potentially substantial economic losses from nonrefundable ticket expenses. Such barri-
ers may make them less willing to participate in social mitigation strategies that the government may
propose. Both government and private organizations may need to take actions to lower such barriers.
For example, the government can encourage businesses to promulgate more fexible sick leave and
ticket reimbursement policies in response to an outbreak of infuenza.
RECOMMENDATION 6-4: COMMUNICATING WITH SCHOOLS
We recommend that the Department of Education, working with the Department of Health and
Human Services and the Department of Labor, meet with representatives from state and local
school districts in August 2009 to identify the ?nancial needs and regulatory barriers that would
discourage decisions to close schools when public health conditions warrant such closures and to
consider actions that Federal, state, and local authorities could take to reduce those disincentives.
Examples of possible actions include waivers on the minimum required number of school days,
meals for children who are in school meal programs, access to online or “drop o?” educational
activities and programs, and childcare options for parents who work. Because actions might need
to be taken rapidly, it is important that these plans be well publicized to institutional actors, includ-
ing school principals.
We also recommend that the Department of Education develop clear and e?ective 2009-H1N1
contingency plans by October 1, 2009, and designate a health professional who is familiar with
public schools to provide guidance to school districts.
RECOMMENDATION 6-5: COMMUNICATING WITH BUSINESSES
We recommend that the Domestic Policy Council and the Assistant to the President for
Intergovernmental A?airs and Public Liaison meet with leaders of small businesses, industry,
and labor to identify mechanisms that might encourage individuals to stay home while sick—for
example, by alleviating economic losses employees might otherwise sustain from such responsible
actions. These leaders could identify actions the President might advocate to reduce barriers to
social mitigation actions, such as more liberal worker leave policies, ?exible union rules, and refund-
able tickets for airlines, trains, or buses or for concerts, athletic, or other public events.
We also recommend that the Federal Government immediately initiate policies that, in the event
of increasing spread of in?uenza virus, would allow Federal employees with respiratory illness (or
those caring for a child with same) to stay at home without ?nancial penalty.
53
53
VII. Improving Communications
Introduction
One of the lessons of prior infuenza epidemics is the importance of timely, clear, and efective commu-
nication among government ofcials, medical professionals, and the public. In spring 2009, CDC reacted
well in terms of communications with both professionals and the public. CDC maintained a steady fow
of up-to-date information and admitted the limitations of its knowledge as the situation evolved.
During the expected fall resurgence of 2009-H1N1, communication will again pose a formidable chal-
lenge for ofcials and others trying to manage the pandemic. But the communications challenge will
be fundamentally diferent than in the spring, when the epidemic arrived unexpectedly and CDC’s
stance was necessarily reactive. For the anticipated fall resurgence, CDC’s approach must be pro-active.
The fundamental difculties are that (i) the messages will be more numerous and more complex and
(ii) the precise content of the messages is uncertain for now and will depend on the specifcs of how
the public health situation unfolds. Nonetheless, the existing data give planners enough knowledge to
envision diferent scenarios of how events could play out (see Chapter 3). This makes it possible—and
we believe imperative—to have carefully considered communication plans prepared in advance, ready
for many contingencies.
For instance, if only limited supplies of vaccine are available initially, it is likely that diverse groups at
particularly high risk of severe disease will be prioritized for vaccination and potentially for antiviral
medications, as described in Chapter 5. Communication plans need to be developed to reach individuals
CHAPTER SUMMARY
Communication will be one of the most formidable challenges in managing the anticipated resurgence
of 2009-H1N1 this fall, due to the rapidly evolving nature of the outbreak, the number and complexity
of the messages, and the myriad channels through which the public will be receiving information.
CDC is the lead Federal agency for communication with state and local health departments, health care
providers, and the general public. CDC’s communications plans for the ?rst two groups appear to be
proceeding well, although we o?er some suggestions.
Concerning communications with the general public, the Working Group believes it would be desirable
to have well-developed communications plans that cover a variety of contingencies and is concerned
that the planning for such communications may be somewhat behind schedule.
We recommend that CDC expand its e?orts to develop a full range of communication plans for vari-
ous contingencies. In view of the fact that 2009-H1N1 particularly a?ects young people, these plans
would ideally include outreach not only to traditional media but also new media and social networking
channels.
54 54
REPORT TO THE PRESI DENT ON U. S. PREPARATI ONS FOR 2009-H1N1 I NFLUENZA
55
who belong to the designated high-risk groups and their health care providers—for example, through
patient advocacy groups, provider organizations, radio and TV spots, and social networking. The content
and format of the outreach materials should be considered in advance. Contacts should be made in
advance with leaders of relevant media or patient organizations so they can prime their networks for
rapid delivery of the relevant messages.
CDC clearly is the lead Federal agency for communication with three constituencies: (1) state and local
health departments, (2) health care providers, and (3) the general public. The Working Group reviewed
CDC’s communications plans in these areas for the anticipated epidemic this fall.
The Working Group expressed confidence in CDC’s communications plans with the public health
departments and health care providers; the Group’s primary suggestion for communication with these
groups is that CDC work to harmonize recommendations with relevant medical societies. In contrast,
the Working Group expressed some concern that CDC’s plans for public communications appear to be
inadequately developed at present and somewhat behind schedule. In addition, the Group was con-
cerned that CDC had not adequately planned to engage the full range of communications channels.
Because 2009-H1N1 will particularly afect young people, there is an opportunity and need to engage
new media and social networking channels.
Communication with State and Local Health Departments
CDC deserves high marks for its coordination of information fow to and from state and local health
departments during the spring 2009-H1N1 outbreak. It clearly articulated what was known and
unknown, provided useful updates in real time, and assimilated large amounts of regional data to pro-
vide an evolving picture of what was happening on the national level.
In Chapters 3 and 4, the Working Group recommends that CDC (i) defne and disseminate specifc sce-
narios concerning the pandemic and (ii) improve various surveillance systems. These steps should feed
into and enhance communications with state and local health departments. In addition, the Working
Group urges CDC to prepare materials to help Federal, state, and local health ofcials deal with potential
MAIN RECOMMENDATION (CHAPTER 7)
We recommend that CDC accelerate its planning e?orts for public communications. Given the
limited time frame and the wide range of uncertainties, we recommend that CDC systematically
identify the full range of messages that may need to be communicated, particularly messages
about actions that may be required of the public under various scenarios; prepare well-developed
plans for these communications; and begin outreach to relevant communications channels as soon
as possible.
We also recommend that CDC engage not only traditional media, with which CDC has deep experi-
ence, but also new media and social networking channels, especially given the propensity of the
2009-H1N1 virus to infect young people. For this purpose we recommend that CDC draw heavily
on the expertise of the o?ce of the Federal Chief Technology O?cer.
54 54 55
VI I. IMPROVI NG COMMUNI CATI ONS
misunderstandings relating to adverse events. It is certain that, by chance, some adverse events will occur
following vaccination (e.g., on any given day, some elderly individuals will die and pregnant women
will miscarry). It is important that CDC has well-developed materials completed in advance to set such
events in context, as well as to help experts recognize truly unexpected occurrences.
Communication with Health Care Providers
Medical professionals rightly regard CDC as the authoritative source for public health information,
especially during emerging epidemics. In general, CDC has discharged this function well during the
present crisis. However, there have been several instances in which its recommendations have been
controversial—particularly those regarding hospital infection control, which have sometimes been
based on hypothetical concerns rather than epidemiological data. Some of these recommendations
generated controversy and even outright opposition from caregivers. For example, CDC’s recommenda-
tion for use of N95 respirators by those caring for hospitalized 2009-H1N1 patients is at variance with the
views of several other expert bodies. Such conficts can generate confusion and anxiety at many levels
in the hospital workplace, impair efective compliance with proper infection control, and undermine
physician confdence in CDC and public confdence in local infection control measures at a time when
confdence levels need to be maximized.
Communication with the General Public
CDC and other Federal agencies must communicate with the public in two broad areas: (1) medical
interventions (vaccines and antiviral medications); and (2) non-medical, community-based interven-
tions (e.g., social distancing and isolation of sick individuals). The Working Group has some concerns
with the communications plans in both areas. Since they have diferent origins, the two sets of concerns
are considered separately.
Medical Interventions: CDC has a long history educating the public about seasonal infuenza and the
vaccine that provides protection against it. Despite this experience, eforts to prepare the infuenza
public information campaign for fall 2009 have been hampered by several factors, including:
• the need to divert staf to communicate urgently with the public regarding the spring 2009-
H1N1 outbreak
• uncertainties about the 2009-H1N1 vaccine (including how much will be available, on what
schedule it will arrive, how many doses may be needed, and who should receive vaccination);
and
RECOMMENDATION 7-1: HARMONIZE RECOMMENDATIONS
We recommend that CDC work to harmonize its recommendations with those of relevant profes-
sional societies prior to their public release. As discussed in Chapter 5, relevant societies include the
Society for Healthcare Epidemiology of America (SHEA), the Infectious Diseases Society of America
(IDSA), and, where recommendations concern children, the American Academy of Pediatrics (AAP).
56 56
REPORT TO THE PRESI DENT ON U. S. PREPARATI ONS FOR 2009-H1N1 I NFLUENZA
57
• the inherent complexity of a public health message that encompasses two vaccines for two
diferent types of infuenza (2009-H1N1 and a seasonal strain), especially if two doses of 2009-
H1N1 vaccine are required.
For these and other reasons there is much communications work ahead, and very little time to complete
it. CDC’s information campaign will need to:
• refocus the public’s attention on 2009-H1N1 infuenza, which has largely receded from public
consciousness (due in part to the media’s sporadic attention to the topic), and its relationship
to seasonal infuenza;
• keep the public updated about the severity of the epidemic;
• educate the public about when to seek medical attention and where to do so;
• inform the public about personal and community-wide action that may be necessary this fall,
and steps people can take to be prepared;
• reach groups at particularly high risk; and
• respond efectively to unexpected events, such as reports of adverse events that occur following
(but not necessarily because of ) vaccination.
To accomplish these missions, it is critical that CDC have well-developed public communications plans
that can be launched rapidly. The planning for various contingencies should be completed now, before
all the relevant information is available. Contacts with various media should be established soon, and
messages and materials should be developed and tested.
We particularly encourage CDC to work with new media and social networking channels. Beyond simply
transmitting CDC’s own messages, we believe there are opportunities to engage and encourage the
creativity of the social networking community to create content and collect information. Members of
the Working Group were impressed by a recent paper by researchers at Google and CDC demonstrating
that an analysis of Google searches related to infuenza-like symptoms was able to identify outbreaks
earlier than conventional surveillance systems. Examples could include: 1) websites with information
about initial self-diagnosis and treatment, up-to-date information about the epidemic, and perhaps
even ways to share personal information that could help inform national surveillance; 2) mobile phone
“apps” with similar content; 3) videos that convey messages in unusual ways; and 4) Facebook quizzes
on infuenza, shared among friends. In support of eforts to fght the infuenza virus, we advise the use
of communications tools designed to facilitate their “going viral.” Such tools are more likely to be created
by members of the public than by the government. However, it may be possible to encourage such
eforts through contests and other mechanisms.
56 56 57
VI I. IMPROVI NG COMMUNI CATI ONS
Non-medical Interventions: Compared to communications about medical interventions, communica-
tions about social actions to mitigate spread of the infuenza virus can be crafted in relatively fnished
form despite uncertainties about details of the epidemic. Public understanding about such personal
measures and their public health value are particularly important given the likelihood that vaccine will
not be available as rapidly as desirable. The Working Group expressed some concern that public com-
munications plans for such measures appear to be incompletely developed.
Fundamentally, there are two main categories of personal actions to mitigate viral spread, hand hygiene
awareness and individual eforts at social distancing, which can be summarized in two simple messages:
“Keep your hands clean” and “Stay home when you’re sick.” Although these messages are simple, the
educational campaign is difcult because it involves persuading people to change established pat-
terns of behavior and requires broad adoption to be successful. Campaigns to encourage these actions
should strive for clarity and simplicity; use diverse and complementary channels of communication;
and incorporate thoughtful policies to mitigate barriers to compliance (see Chapter 7). Importantly,
such campaigns will need to educate the public about why the measures are needed as well as how to
comply with them.
Hand hygiene awareness is more than just hand washing. It includes minimizing contact of hands with
respiratory secretions—by coughing into a sleeve rather than a hand, for example. Communication
channels that can transmit graphic visual images (e.g., television and Internet) are likely to be the most
efective. The public already has accepted media ads involving more sensitive bodily functions, and
major advertising agencies know how to craft efective and acceptable messages in this regard. New
media and social networking expertise may also be efective here.
RECOMMENDATION 7-2: CDC COMMUNICATION EXPANSION
We recommend that CDC expand its e?orts to develop a robust communications plan covering the
full range of potential public messages about medical and non-medical interventions. We strongly
suggest that communications e?orts be launched prior to September 1.
A. With respect to traditional media, we suggest that CDC reach out to major communication
channels (e.g., editorial boards and medical reporters at newspapers, TV and radio stations,
and magazines) to inform them about issues, to interest them in running stories to promote
awareness, and to maintain connections that will facilitate communication when unfolding
events demand rapid responses.
B. With respect to new media and social networking, we suggest that CDC reach out to key
companies (e.g., Facebook, Twitter, Google, Apple) and other innovative entities and indi-
viduals (those who maintain prominent websites and blogs related to health in general
and in?uenza in particular). In this outreach, CDC could bene?t by working closely with the
Federal Chief Technology O?cer.
C. In addition, we urge CDC to expand its capacity to develop rapid responses to misinformation
appearing in traditional media and on the Internet
58 58
REPORT TO THE PRESI DENT ON U. S. PREPARATI ONS FOR 2009-H1N1 I NFLUENZA
Social distancing campaigns, especially those that go well beyond the simple notion of remaining
isolated, generally at home, when ill, must enlist the participation of the general public to be efective.
Workers and students will need to know when to stay home and for how long; they will also need guid-
ance about proper infection control in the home. When asking the public to eschew activities that involve
crowds at sporting events, concerts, transportation centers, shopping areas, and other gathering places,
the messages will need to explain the rationale for such changes in behavior and provide an estimate
of the length of time the recommendations will be in place. All channels are useful and eforts should
be made to enlist the most efective communicators (e.g., celebrities) to deliver the relevant messages.
Such campaigns also need to enlist the support of those responsible for the venues in which suscep-
tible and infected people are likely to congregate (e.g., employers, school and university administrators,
church leaders, sports leagues, and rock concert promoters). Now is the time for the CDC to establish
communication channels with corporate human resource professionals, school ofcials, and others to
inform them about the public health issues surrounding 2009-H1N1 and to help them understand that
allowing sick individuals to stay home is in their organizations’ best interest, as it will minimize large-scale
absenteeism. Universities may require special guidance about infection control in dormitory settings.
RECOMMENDATION 7-3: CDC COMMUNICATION QUICK LAUNCH
We recommend that CDC rapidly develop and launch its communications plan concerning personal
non-medical interventions.
In particular, we suggest that CDC: a) immediately hire a major advertising organization to help
craft ads for non-medical interventions, targeted at various audiences (e.g., employers, the general
public, school administrators) and b) work with the Federal Chief Technology O?cer to engage new
media and social networking channels in support of these goals.
58 58
VIII. Planning for More Efective Future
Strategies Against Infuenza
The current situation with 2009-H1N1 has highlighted critical shortcomings in public response systems
to the emergence of new infuenza strains and more generally to outbreaks of infectious diseases. Given
the emergence of multiple biological threats during the past decade (including SARS, avian fu, 2009-
H1N1, and at least one instance of bioterrorism), it is likely that we will face continued challenges from
infectious diseases. While there has been substantial progress in preparedness over the past several
years, there is much work that needs to be rapidly completed. Even while we are dealing with 2009-
H1N1, the Federal Government should take specifc steps to ensure our preparedness for the next event.
Some of these steps will also aid our national response to seasonal infuenza.
CHAPTER SUMMARY
The current threat from 2009-H1N1 has highlighted critical shortcomings in public response systems to
the emergence of new in?uenza strains and more generally to outbreaks of infectious diseases.
There are important opportunities to increase national preparedness against future epidemics. These
include steps to improve: the design, production, and use of vaccines; the range of antiviral drugs; the
availability of rapid diagnostics; and the breadth of health surveillance systems. Some of the steps can
be achieved quickly (within the next year), while some will take longer.
We propose that the National Security Council coordinate a government-wide e?ort to increase national
preparedness in response to the lessons learned from the 2009-H1N1 outbreak and provide periodic
updates to the President on national progress toward these goals.
MAIN RECOMMENDATION (CHAPTER 8)
There are important opportunities to increase national preparedness against future epidemics.
These include steps to improve: the production and use of vaccines; the range of antiviral drugs;
the availability of rapid diagnostics; and the breadth of health surveillance systems. Some of the
steps can be achieved quickly (within the next year), while some will take longer.
We propose that the National Security Council coordinate a government-wide e?ort to increase
national preparedness speci?cally in response to the lessons learned from the 2009-H1N1 outbreak
and provide periodic progress updates to the President on national progress toward these goals.
59
60 60
REPORT TO THE PRESI DENT ON U. S. PREPARATI ONS FOR 2009-H1N1 I NFLUENZA
61
Accelerate Speed and Increase Yield and Efectiveness of Vaccine Production
Current methods for producing infuenza vaccine are too slow, cumbersome, and inefcient given the
challenge of a rapidly spreading infuenza virus epidemic. The predominant design and technologies
used to produce infuenza vaccines have not fundamentally changed in several decades: Viruses are
grown in embryonated chicken eggs, then harvested and processed to create the vaccine. The process
typically takes 6 to 9 months, from initial steps to develop a “seed” vaccine virus to completed product.
Moreover, when a novel virus is isolated late in an infuenza season (as was the case with 2009-H1N1), it
is difcult or impossible to prepare and test vaccine before the resurgence in the next infuenza season
(which, moreover, tends to occur early for novel viruses).
Recently, there has been progress on two new approaches for vaccine production:
• Cell-based vaccines, in which viruses are grown in cultured cells rather than eggs. This method
obviates the need for large quantities of embryonated eggs and potentially permits increased
levels of production beyond those currently achievable. The method, however, does not sub-
stantially shorten the timeline between identifcation of the virus strains to be included in the
vaccine and the vaccine’s availability. This approach is currently being used by several companies
to produce candidate 2009-H1N1 vaccines, but such cell-based vaccines have not yet achieved
licensure in the United States.
• Recombinant vaccines, in which molecular biology techniques are used to clone infuenza virus
vaccine proteins into various expression systems. There are several such methods currently
under development and evaluation, including some by industry and by the Defense Advanced
Research Projects Administration (DARPA). This approach has potential to shorten the time
between vaccine strain identifcation and fnal vaccine production to as little as a few months, as
well as provide a large increase in vaccine production volume. However, considerable additional
development and clinical work is required to frmly prove the efectiveness of these technolo-
gies and to provide the necessary data for eventual licensure.
In addition to the pursuit of these approaches, greater eforts should be made to take advantage of
modern understanding of infuenza virus epitopes (the sites on proteins that induce immunity), three-
dimensional protein structure, the mechanisms of immune recognition, and the sites on infuenza viral
proteins at which the most signifcant variation is observed. By harnessing such information to new
methods for protein design and genetic engineering, it is possible to envision infuenza vaccines of the
future that provide longer-lasting immunity against a wider range of viral isolates. Such vaccines might
be produced efciently as proteins in a variety of expression systems or as attenuated viruses grown in
cell culture systems.
In addition to improving vaccine design and technology for vaccine production, eforts need to be
undertaken to assess and license adjuvants that are compatible with infuenza vaccines. Adjuvants can
greatly increase the potency of vaccines and thereby extend the number of people who can be vac-
cinated with a given supply. None is currently approved for use with infuenza vaccines in the United
States, although adjuvants have been approved and are being used with infuenza vaccines in Europe.
60 60 61
VI I I. PLANNI NG FOR MORE EFFECTIVE FUTURE STRATEGI ES AGAI NST I NFLUENZA
The use of adjuvants thus currently requires Emergency Use Authorization (EUA), a step that regulators
may be reluctant to take. Although clinical trials of 2009-H1N1 vaccines with adjuvants are planned
for the coming months, it will not be feasible to obtain standard FDA approval in time for use this fall.
Nonetheless, it would be desirable to achieve licensure of the currently available adjuvants for use in
the near future. Beyond existing adjuvants, recent advances in immunology point the way to powerful
new types of adjuvants, the pursuit of which may ultimately enhance the efcacy and lower the costs
of infuenza vaccines.
Even while these new products are being developed and tested, it is important that the Federal
Government ensure that capacity is maintained for infuenza production by traditional approaches
for the foreseeable future. Capacity was increased in preparation for a potential avian infuenza (H5N1)
pandemic and is thus available for response to the current 2009-H1N1 pandemic. However, if such high
capacity levels are not needed over the coming years, companies may reduce production capacity to
bring it more in line with the lower anticipated demand for seasonal infuenza vaccine. The prospect of
such reduced capacity, which would limit the ability to respond to novel infuenza pandemics, provides
further incentive for developing more efcient means of production.
Facilitate Development of Additional Antiviral Drugs
There is an urgent need to expand the available range of antiviral drugs that can be used for prophy-
laxis or treatment of infuenza. Currently, there is only a handful of antiviral drugs and only two that are
licensed and expected to be efective against 2009-H1N1: the oral drug oseltamivir (Tamifu) and the
inhaled drug zanamivir (Relenza). There currently are no antiviral drugs approved for intravenous use
to treat seriously ill patients—although one new drug (peramivir) and the two existing drugs are also
being tested in intravenous formulations.
Moreover, these options may narrow further as infuenza viruses develop resistance to these drugs. Most
seasonal infuenza has already developed resistance to oseltamivir, and a handful of cases of oseltamivir-
resistance have been reported among 2009-H1N1 isolates (nine as of the end of July), indicating that
this virus can also develop resistance.
RECOMMENDATION 8-1: VACCINES
We recommend that the Federal Government work to:
A. ensure that in?uenza virus vaccines produced in cell culture, as well as vaccines formulated
with the currently available adjuvants, proceed expeditiously through the FDA regulatory
process for licensure;
B. fully support and encourage development of recombinant in?uenza vaccines and provide
a clear regulatory path for licensure;
C. encourage and support the development of new adjuvants; and
D. ensure that adequate manufacturing capacity is maintained for production of in?uenza
vaccine using currently approved methods.
62 62
REPORT TO THE PRESI DENT ON U. S. PREPARATI ONS FOR 2009-H1N1 I NFLUENZA
63
It will be important to develop new classes of drugs to expand the armamentarium. A particularly
promising new approach is to develop drugs that block the virus by acting on a human cellular function
(‘host target’), rather than a viral protein (‘pathogen target’), because such drugs should be less likely
to encounter acquired resistance.
Facilitate Development of Rapid Point-of-Care Diagnostics
Infuenza can be difcult to diagnose because similar symptoms can be caused by agents other than
the infuenza virus, including adenovirus, respiratory syncytial virus, rhinovirus, parainfuenza viruses,
mycoplasma, and other agents. Moreover, it is important to be able to distinguish among diferent
infuenza strains, such as seasonal infuenza and 2009-H1N1 infuenza, because resistance patterns and
drug-of-choice may vary. Defnitive diagnosis can be important to guide medical decisions for individual
patients and to permit accurate epidemiological surveillance.
Accurate diagnostic tests for distinguishing diferent infuenza strains are available, but they (i) require
several hours to days to provide results, (ii) are not readily deployed in physicians’ offices or even
hospital settings, (iii) have limited sensitivity, and (iv) are available in only limited capacity that will be
overwhelmed in a serious pandemic. The Nation needs the capability to perform rapid, simple, point-
of-care diagnostics. The competence and capability to develop such diagnostics exists in many places,
including CDC, NIH, DARPA and DHS, and the importance of this issue warrants strong, mission-driven
coordination of eforts across these agencies.
Improve Medical Surveillance
As described in detail in Chapter 4, there are substantial gaps in the Nation’s medical surveillance systems
that limit our ability to obtain accurate, real-time information about epidemics. Some of these gaps
can be closed quickly, but a more systematic, long-term efort to eliminate them would substantially
improve national preparedness.
RECOMMENDATION 8-2: ANTIVIRALS
We recommend that the Federal Government work to:
A. expedite the licensure of intravenous formulations of antivirals, and
B. stimulate the development of new in?uenza drugs that have novel mechanisms of action in
order to reduce the potential for antiviral resistance.
RECOMMENDATION 8-3: DIAGNOSTICS
We recommend that the Federal Government ensure the creation of a national capability to
develop, on a rapid basis, accurate point-of-care diagnostics for any novel in?uenza virus. Such an
e?ort might be led by DHHS, in coordination with DOD and DHS.
62 62 63
VI I I. PLANNI NG FOR MORE EFFECTIVE FUTURE STRATEGI ES AGAI NST I NFLUENZA
Surveillance preparedness to date has emphasized early detection of an outbreak (e.g. early knowledge
of an anthrax attack), while underplaying the role of ongoing surveillance once an outbreak of infectious
disease is underway. In the case of infuenza, while the United States has systems to provide epidemio-
logical and virological data on infuenza, we are still not able to make confdent estimates each week of
the number of people who are infected, seek medical care, are hospitalized, or die of infuenza. Notably,
the UK measures and publicizes many of these statistics weekly.
Such “situational awareness” is essential for an evaluation of the characteristics of the pandemic, efec-
tive allocation of resources to places of greatest need, and appropriate changes in mitigation and other
response strategies over the course of a pandemic. Moreover, the ability to make such estimates would
improve diagnosis and treatment of respiratory infections in general and of infuenza specifcally, both
in normal and pandemic years, and would provide a basis for greater cost-efectiveness. The estimates
could be obtained with a nationally representative electronic reporting system for primary care and
emergency visits, hospitalizations, ICU admissions, and deaths for defned respiratory infections, com-
bined with viral testing of a representative subset of these individuals. This would permit public health
departments to assess the contribution of various viruses to the disease burden at each level.
A second key shortcoming in our preparedness is the lack of a rapid system for assembling detailed
clinical data on severe cases that can provide a statistically adequate and continuously updated picture
of risk groups and clinical course. Current systems rely on non-standardized reports from local health
departments and on peer-reviewed case series, which are slow to become public.
As the current pandemic continues to unfold, other key gaps in our situational awareness will likely
emerge. These revelations should be a basis for improving public health information systems.
RECOMMENDATION 8-4: MEDICAL SURVEILLANCE
We recommend that CDC take steps to improve surveillance systems for use in epidemics. This
could include:
A. working with state and local authorities to establish a dense, geographically diverse, nation-
wide, real-time surveillance network that can estimate population rates of primary care
and emergency visits, hospitalizations, ICU admissions, deaths from de?ned respiratory
syndromes, and (in a random sample of cases) presence of speci?c viruses.
B. working with a set of large hospitals, at least one in each of the top 30 metropolitan areas
together with the respective local authorities, to establish a system for standardized local
and national reporting of demographic, laboratory, and clinical characteristics of hospital-
ized and more severe cases of de?ned syndromes, including but not limited to in?uenza.
We also recommend that after the current pandemic DHHS undertake a comprehensive review of
unmet needs for data, possible solutions to the problems of providing such data under emergency
conditions, and the costs of building the necessary surveillance systems.
64 64
REPORT TO THE PRESI DENT ON U. S. PREPARATI ONS FOR 2009-H1N1 I NFLUENZA
65
Enhance Animal Surveillance Measures
Birds and pigs serve as critical intermediate hosts in the evolution of infuenza viruses, including the
current 2009-H1N1 virus. Methods for monitoring infuenza viruses in swine and turkeys are powerful
tools for following the appearance, spread, and evolution of viruses, and such surveillance would be
valuable for both human public health and agriculture. Currently the United States lacks a reliable system
for doing this, but a NIH-funded surveillance program of apparently healthy pigs at a slaughterhouse in
Hong Kong has established the benefts of such a system.
RECOMMENDATION 8-5: USDA AND CDC COLLABORATION
We recommend that USDA and CDC collaborate to develop a cooperative program of human and
animal public health that includes:
A. prospective virological and serological surveillance of swine and turkeys, and the workers
exposed to them, at permanent sites, to serve as an early warning system of potentially
pandemic in?uenza viruses of humans, swine, and turkeys.
B. expanded sharing of in?uenza viruses, viral sequence information, and reagents.
64 64 65
References
Australian Government, Department of Health and Aging. Update bulletins for Pandemic (H1N1)
2009 for 27 July to 2 August 2009. Available at: www.healthemergency.gov.au/internet/heal-
themergency/publishing.nsf/Content/updates-2August09.htm).
Beveridge WIB. Infuenza: The Last Great Plague. London: Heinemann, 1977.
Breman J, Hayner N. Guillain-Barre Syndrome and its Relationship to Swine Infuenza Vaccination in
Michigan, 1976-1977, American Journal of Epidemiology 1994; 119(6): 880-889.
Bootsma MCJ, Ferguson NM. The efect of public health measures on the 1918-19 infuenza pandemic
in U.S. cities. Proceedings of the National Academy of Sciences 2007; 104(18):7588-93.
Department of Homeland Security. Homeland Security Council. May 2006. National Strategy for
Pandemic Infuenza: Implementation Plan. Available at:
www.pandemicfu.gov/plan/federal/pandemic-infuenza-implementation.pdf
Dowdle WR. “Infuenza: Epidemic Patterns and Antigenic Variation.” In Selby P, (ed.). Infuenza: Virus,
Vaccine and Strategy. New York and London: Academic Press, 1976, pp. 17-21.
Ginsberg J, Mohebbi M, Patel RS, Brammer L, Smolinski M, Brillant L. Detecting infuenza epidemics
using search engine query data. Nature November 19, 2008; 457:1012-1014.
Hatchett RJ, Mecher CE, Lipsitch M. Public health interventions and epidemic intensity dur
ing the 1918-19 infuenza pandemic. Proceedings of the National Academy of Sciences 2007;
104(18):7582-7587.
Lipsitch M, Hayden FG, Cowling B, Leung GM, How to maintain surveillance for novel infuenza A
H1N1 when there are too many cases to count. Lancet in press 2009.
Markel H, Lipman HB, Navarro A, Sloan A, Michalsen JR, Stern AM, Cetron M. Nonpharmaceutical
interventions implemented by US cities during the 1918-19-1919 infuenza pandemic.
Journal of the American Medical Association 2007; 298:644-654.
Meltzer M, Cox N, Fukuda K. The Economic Impact of Pandemic Infuenza in the United States:
Priorities for Intervention. Emerging Infectious Diseases 1999; 5(5): 659-671.
Millar, J, Refections on the 1976 swine fu vaccination program. Emerging Infectious Diseases 2006 at
http://www.cdc.gov/ncidod/eid/vol12no01/05-1007.htm.
Molinari N, Ortega-Sanchez I, Messonnier M, Thompson W, Wortley P, Weintraub E, Bridges C. The
annual impact of seasonal infuenza in the US: Measuring disease burden and costs. Vaccine
2007; 25:5086-5096.
Morens DM, Taubenberger JK, Fauci AS. The persistent legacy of the 1918-19 infuenza virus.
New England Journal of Medicine 2009; 361 (3):225-229.
65
66 66 67
Murray CJL, Lopez AD, Chin B, Feehan D, Hill KH. Estimation of potential global pandemic infuenza
mortality on the basis of vital registry data from the 1918-19—20 pandemic: a quantitative
analysis. The Lancet 2006; 368 (9554):2211-2218.
Osborn J (ed.). Infuenza in America, 1918-19-1976. NY: Prodist, 1977.
Palese P, Shaw ML. “Orthomyxoviridae: The Viruses and their Replication.” In: Knipe DM, Howley PM,
et al. (Eds.). Fields Virology, 5th edition. Philadelphia: Lippincott-Raven Press, 2007. pp.
1647-1689.
Swendiman KS, Jones NL. The 2009 Infuenza A(H1N1) Outbreak: Selected Legal Issues. Washington,
DC: Congressional Research Service, Report Number R40560, May 21, 2009.
Wright PF, Neumann G, Kawaoka Y. “Orthomyxoviruses.” In: Knipe DM, Howley PM, et al. (Eds.).
Fields Virology, 5th edition. Philadelphia: Lippincott-Raven Press, 2007. pp. 1691-1729.
Zimmer SM, Burke DS. Historical perspective—emergence of infuenza A (H1N1) viruses.
New England Journal of Medicine 2009; 361(3):279-285.
66 66 67
Acknowledgements
PCAST wishes to express gratitude to the following individuals who contributed in various ways to
the preparation of this report:
Richard Besser, Director, Coordinating Ofce
for Terrorism Preparedness and Emergency
Response, Centers for Disease Control and
Prevention (CDC), Department of Health and
Human Services (HHS)
Guthrie Birkhead, Deputy Commissioner, Ofce
of Public Health, New York State Department of
Health
Debra Birnkrant, Division of Antiviral Products,
Food and Drug Administration (FDA)
Joe Bresee, Branch Chief, Epidemiology and
Prevention, Infuenza Division, CDC, HHS
Michael Callahan, Program Manager, Blue Angel
project, Defense Advanced Research Projects
Agency (DARPA), Department of Defense (DOD)
Martin Cetron, Director for the Division of Global
Migration and Quarantine, CDC, HHS
D.W. Chen, Director, Civil-Military Medicine,
Ofce of the Assistant Secretary of Defense for
Health Afairs, DOD
Ken Cole, Medical Director, Ofce of the Deputy
Assistant to the Secretary of Defense for
Chemical and Biological Defense and Chemical
Demiliatrization, DOD
Jose Diez, Associate Deputy Administrator for
Emergency Management and Diagnostics,
Animal and Plant Health Inspection Service
(APHIS), Department of Agriculture (USDA)
Greg Dworkin, Contributing Editor, Daily Kos;
Founding Editor, Flu Wiki
Anthony Fauci, Director, National Institute of
Allergy and Infectious Diseases (NIAID), National
Institutes of Health (NIH), HHS
Neil Ferguson, Director, Medical Research
College (MRC) Centre for Outbreak Analysis and
Modeling, Imperial College, London
Keith Fontenot, Associate Director, Health
Programs, Ofce of Management and Budget,
The White House
Bruce Gellin, Deputy Assistant Secretary for
Health; Director, National Vaccine Program Ofce;
HHS
Jesse Goodman, Chief Scientist and Acting
Deputy Commissioner, Food and Drug
Administration (FDA)
Dan Hanfing, Special Advisor, Emergency
Preparedness and Response, Inova Health
System, Falls Church, Virginia
Richard Hatchett, Director for Medical
Preparedness Policy, National Security Staf,
The White House
Frederick Hayden, Wellcome Trust
Kathi Hanna, Science Writer
Carole Heilman, Director, Division of
Microbiology and Infectious Diseases, NIAID, NIH,
HHS
Thomas Inglesby, Chief Operating Ofcer and
Deputy Director, University of Pittsburg Medical
Center, Center for Biosecurity
Michael G. Ison, Divisions of Infectious Diseases &
Organ Transplantation, Northwestern University
Dennis Israelski, Clinical Professor of Medicine,
Department of Medicine, Division of Infectious
Diseases and Geographic Medicine, Stanford
University School of Medicine;Vice President
for Global Health, Innovative Support to
Emergencies, Diseases, and Disasters ( InSTEDD)
68 68
Til Jolly, Associate Chief Medical Ofcer for
Medical Readiness, Department of Homeland
Security (DHS)
Lisa Koonin, Senior Advisor, Infuenza
Coordination Unit, CDC
Peter Lammers, Vice President, Vaccines Business
Unit, Glaxo Smith Kline
James Lawler, Director for Medical Preparedness
Policy, National Security Staf, The White House
Nicole Lurie, Assistant Secretary for Preparedness
and Response, HHS
Ben Machielse, Executive Vice President,
Operations, MedImmune
Howard Markel, George E. Wantz Distinguished
Professor of the History of Medicine; Director,
Center for the History of Medicine; Professor
of Pediatrics and Communicable Diseases; The
University of Michigan
Alison McGeer, Professor, Dalla Lana School of
Public Health, Mt. Sinai Hospital, University of
Toronto, Canada
William Modzeleski, Associate Assistant Deputy
Secretary, Ofce of Safe and Drug Free Schools,
U.S. Department of Education
Beth Noveck, US Deputy Chief Technology Ofcer
for Open Government Initiative, Ofce of Science
and Technology Policy (OSTP), The White House
Steve Ostrof, Director, Bureau of Epidemiology,
Pennsylvania Department of Health
Andrew T. Pavia, George and Esther Gross
Presidential Professor; Chief, Division of Pediatric
Infectious Diseases; University of Utah
Rino Rappuoli, Global Head of Vaccines Research,
Novartis
Stephen Redd, Director, Infuenza Coordination
Unit, CDC, HHS
Barbara J. Reynolds, Crisis Communications
Senior Advisor, Ofce of the Director, Centers for
Disease Control and Prevention, HHS
Robin Robinson, Director, Biomedical Advanced
Research & Development Authority (BARDA),
HHS
Lone Simonsen, Research Professor, Department
of Global Health, School of Public Health and
Health Services, George Washington University
Derek Smith, Professor of Infectious Disease
Informatics, Cambridge University, UK; Member,
Virology Department, Erasmus Medical Center,
Netherlands; Senior Fellow, Fogarty International
Center, NIH, HHS
John Treanor, Professor of Medicine, and of
Microbiology and Immunology, School of
Medicine and Dentistry, University of Rochester
doc_263309179.pdf