Flexible Bill of Materials (BOM)

Description
The PPT explaining about the need of flexible BOM.

MATERIAL REQUIREMENTS PLANNING WITH FLEXIBLE BILL-OF-MATERIALS

Agenda
?

Discuss Flexible Bill-of-materials (BOM)
LP model to counter shortage using flexible BOM Food production environment example Conclusions

?

?

?

A need for Flexible BOM
?

To deal with excessive nervousness in the system
? Excessive

rescheduling costs ? Capacity Utilization fluctuation
?

Strategies investigated for solution:
? Safety

Stock/Safety Lead times
Investment will be high

? Inventory

A need for Flexible BOM (contd)
? Freezing
? Leads

Master Production Schedule (MPS)

to high total cost

? Forecasting
? This

beyond planning horizon

is susceptible to demand variability

? MRP
? You

system with fixed BOM

have to change production plan to deal with system nervousness

Flexible Bills-Of-Material
?

Flexibility is at item level
?

Characterized by ranges in the quantities of lower level items in a parent item.
This enables tackling system unpredictability without change in production plan. Ideal for cases where a part/assembly can be replaced by another part/assembly First motivated by the ALSS initiative of NASA.

?

?

?

Example of Food BOM

Example of Flexible BOM

The LP model

LP model contd…
?

Objective
? Minimize

deviation from standard BOM

?

Constraints
? Quantity
? ? ki

of lower level items must be same as in standard BOM
= ?ksi

? Sum
? ki

of +ve and –ve deviations of quantity of each lower level item should equal total deviation.
– ?i+ + ?i- = ksi

LP model contd…
? The

sum of the current period inventory on hand and scheduled receipt should not be less than derived demand for each item based on the planned order release
? (POHit-1

+ SRit ) ? (ki*PORLt )

? The
? li

quantity of lower level items must be within the upper and lower bounds.
< ki < ui

Inventory Records

LP solution
?

?

Consider that in Period 4, Lettuce orders received are 7 units instead of 11 => MPS requirement cannot be met LP Equations (constraints) –
? k1

+ k2 + k3 = 12

? -(k1*4)+(9+7)

?0 ? -(k2*4)+(0+18) ?0 ? -(k3*4)+(0+14) ?0
?2

? k1 ? 9, 0 ? k2 ? 7, 0 ? k3 ? 6

Solution from LP

Conclusion
?

Flexible BOM can be used to deal with possible shortages when using MRP Food Processing is one area of application Can be extended to manufacturing
? In

?

?

the case of Electronics Industry, substitution of solid state components can be done.

References
?

Bala Ram, M. Reza. Nagashineh-Pour and Xuefeng Yu ‘Material Requirements Planning with flexible bills-of-material’, International Journal of Production Research, Vol. 44, No. 2, 15 January 2006, pp. 399-415.



doc_322602598.pptx
 

Attachments

Back
Top