Demand Management Basics

Description
Demand Management and it contains topics like what is demand, what is forecasting, methods of forecasting, typical forecasting program, error monitoring.

Demand Management

Demand
• Planning as most important function of management • Demand Management deals with both consumer needs and supplier coordination • Purpose of demand management is to coordinate and control all resources to efficiently utilise systems

• Demands has to be forecasted to run businesses profitably
2

Forecasting
• Many business decisions depend on some sort of forecasting • Forecasting is scientifically calculated guess, it forms the basis of planning • Levels of forecasting - Short term (upto 1 yr) Medium term (1 to 3 yrs) and Long term (over 5 yrs) • Extrinsic forecast & intrinsic forecast • Elements of forecasting
? ?

Internal factors (past, present and future) External factors (controllable & uncontrollable)
3

Methods of Forecasting
• Qualitative Techniques
? ? ? ?

Market research Panel Consensus History Analogy Delphi Method
Linear Regression Multiple Regression Input Output Analysis End use analysis
4

• Casual Methods
? ? ? ?

• Simulation – Monte Carlo Simulation

Methods of Forecasting . . contd
• Time Series
? ?

Extrapolation – Used when past data is linear Moving Average – Used when data is cyclic
o o

Simple – Average of specified past period is considered Weighted – different weights are assigned to past data

?

Exponential Smoothing – weightage decreased exponentially
o o

o

Simple Exponential Smoothing Trend adjusted Seasonality considered

5

Forecasting programme for any company
• Observing, listing and studying external factors (cultural, social, political, technological) nationally & internationally • Gather info on internal company policies (changes in design, quality, sales) & their effect on demand • Analyse data to establish various relationships and their relative effects of each factors on final demand • Create various scenarios assuming certain happenings in external environment & alternative internal policies • Operationally apply the forecast by breaking it down on the number of product lines. Do Break Even analysis • Regularly monitor forecast errors & update method
6

Prerequisites & Pitfalls in Forecasting
• Define the purpose of forecasting, this will help to decide the accuracy & type of technique to be chosen • It should be combined effort organisationally • Forecasting technique will vary depending on the Product Life Cycle and stage of the product
? ?

New product development stage – Delphi, PDMT Steady state of PLC – Time series with trend & seasonality

• Quite often wrong things are forecasted • People go for minute forecasting of odd products • No timely tracking of forecasting
7

Range & Precision of Forecast
• Forecast may be in terms of ranges
? ?

Higher range – low value, low turnover items in inventory Lower range – Capital intensive machineries

• It will also guide the company form its strategic posture • Precision in forecasting is not as important as proper use of available data • It is better to use the available data according to situational demands

8

Technology Forecasting
• • • • • It deals with estimation of future trends in technology Helps making current decisions examining future choices Guides wide range of long term planning process Forecasting tool at micro level corporate planning also Very effective for high range technology products as gestation time to become productive is quite long • Exploratory technology forecasting – Predicting future with present trends & capabilities • Normative Forecasting – Set goals & objectives of future technology and take necessary current action
9

Uses of Technology Forecasting
In planning of future discoveries & technologies

Government
Planning

Industry
Corporate Planning

Universities
Future Academic Roles

Individuals
Selection of fertile areas of research

Policy formation for the allocation of resources

Investment in production

Investment in research & development
10

Selecting a forecasting method
• Choice depends on
? ? ? ? ?

Purpose of forecasting Type and amount of data available Time horizon of forecast Degree of accuracy required Cost involved

11

Forecast Error Monitoring - MAD
•Mean Absolute Deviation (MAD)
Absolute means the positive & negative signs are ignored ?Deviation is difference between forecast & actuals
?

Period 1 2 3 4 5

Forecast Demand 900 1000 1050 1010 980

Actual Demand 1000 1100 1000 960 970

Deviation 100 100 -50 -50 - 15

MAD = ?I Deviation I = N

315 = 63 5
12

Forecast Error Monitoring - RSFE
•Running sum of forecast errors (RSFE) ?This is algebraic sum of forecasting errors (deviation)
Period 1 2 Forecast Demand 900 1000 Actual Demand 1000 1100 Deviation 100 100

3
4 5

1050
1010 980

1000
960 970

-50
-50 -15

RSFE = ?Deviation = 85
13

Forecast Error Monitoring - Formulas
Mean Square Error (MSE) = ? (Deviation)² N Percentage Error (PE) = (Deviation / Demand) x 100 Mean Absolute Percentage Error = ? I PE I

N
Tracking Signal = RSFE MAD

14

Forecast Error Monitoring . . contd
• RSFE is calculated to determine whether or not the forecast has positive or negative bias • MAD indicates the volume or amplitude of deviation from actuals • Both the bias and amplitude of forecast errors are important • It is important to monitor MAD & Tracking signal for any modifications to be made in original forecasting model • A good forecast should have approximately as much positive as negative deviation
15

Problem
Forecast 100 Demand 110

Table shows actual & forecasted demand. Calculate: - MAD - MSE - MAPE - Tracking Signal

90
80 85 75 85 65

85
88 95 65 80 52

16

Problem
Forecast 100 Demand 110 Deviation 10

90
80 85 75 85 65

85
88 95 65 80 52

-5
8 10 -10 -5 -13
17

Problem
Forecast 100 Demand 110 Deviation 10 (Deviation)² 100

90
80 85 75 85 65

85
88 95 65 80 52

-5
8 10 -10 -5 -13

25
64 100 100 25 169
18

Problem
Forecast 100 90 80 85 75 85 Demand 110 85 88 95 65 80 Deviation 10 -5 8 10 -10 -5 (Deviation)² 100 25 64 100 100 25 Percentage Error 9.09 -5.88 9.09 10.52 -15.38 -6.25

65

52

-13

169

-25
19

Problem
MAD =? I Deviation I N MSE = ? (Deviation)² = 61 7 = 8.71

= 583

= 83.29

7

7

MAPE = ? I PE I = 81.23 = 11.6% N 7

Tracking Signal = RSFE
MAD

= -5
8.71

= -0.57

20

Practice Problem
Forecast 150 125 130 145 Demand 160 130 135 150

Table shows actual & forecasted demand. Calculate: - MAD

180
170 165 155

160
165 145 150

- MSE
- MAPE - Tracking Signal

155
150 150 160

155
160 165 160

21

Simple Moving Average - Formula
( MA ) t = Dt + Dt-1 + Dt-2 + . . . . Dt-n+1

n
( MA ) t = ( f ) t+1 Where; MA = Moving Average f = Moving Avg Forecast t = time

22

Problem – Simple Moving Average Method
Month Demand (D) Jan Feb Mar Apr May Jun Jul Aug Sep Oct 450 440 460 510 520 495 475 560 510 520

Forecast using 3 month and 6 month moving average and determine which is a better forecast

Nov
Dec

540
550
23

Problem – Simple Moving Average Method
Month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Demand (D) 450 440 460 510 520 495 475 560 510 520 540 550 Moving Average (3 mth) 450 470 497 508 497 510 515 530 523 537
24

Problem – Simple Moving Average Method
Month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Demand (D) 450 440 460 510 520 495 475 560 510 520 540 550 Moving Average (3 mth) 450 470 497 508 497 510 515 530 523 537 Moving Average Forecast (f)(3 mth) 450 470 497 508 497 510 515 530 523
25

Problem – Simple Moving Average Method
Month Demand (D) Moving Average (3 mth) 450 470 497 508 Moving Average Forecast (f)(3 mth) 450 470 497 Deviation

Jan Feb Mar Apr May Jun

450 440 460 510 520 495

60 50 -2

Jul
Aug Sep Oct

475
560 510 520

497
510 515 530

508
497 510 515

-33
63 0 5

Nov Dec

540 550

523 537

530 523

10 27
26

Problem – Simple Moving Average Method
Month Jan Feb Mar Apr May Jun Jul Aug Sep Demand (D) 450 440 460 510 520 495 475 560 510 MA (3 mth) 450 470 497 508 497 510 515 F (3 mth) 450 470 497 508 497 510 Deviation 60 50 -2 -33 63 0

MAD = ?I Deviation I

N
MAD = 250 / 9 MAD = 27.78 RSFE = ? Deviation RSFE = 180

Oct
Nov

520
540

530
523

515
530

5
10

Tracking Signal = RSFE / MAD
= 6.48
27

Dec

550

537

523

27

Problem – Simple Moving Average Method
Month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Demand (D) 450 440 460 510 520 495 475 560 510 520 540 550 Moving Average (6 mth) 479 483 503 512 513 517 526
28

Problem – Simple Moving Average Method
Month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Demand (D) 450 440 460 510 520 495 475 560 510 520 540 550 Moving Average (6 mth) 479 483 503 512 513 517 526 Moving Average Forecast(6 mth) 479 483 503 512 513 517
29

Problem – Simple Moving Average Method
Month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Demand (D) 450 440 460 510 520 495 475 560 510 520 540 550 Moving Average (6 mth) 479 483 503 512 513 517 526 Moving Average Forecast(6 mth) 479 483 503 512 513 517 Deviation -4 77 7 8 27 33
30

Problem – Simple Moving Average Method
Month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Demand (D) 450 440 460 510 520 495 475 560 510 520 540 550 MA (6mth) 479 483 503 512 513 517 526 F (6mth) 479 483 503 512 513 517 Deviation -4 77 7 8 27 33
31

MAD = ?I Deviation I N MAD = 156 / 6 MAD = 26

RSFE = ? Deviation
RSFE = 148

Tracking Signal = RSFE / MAD = 5.7

Problem – Simple Moving Average Method
• Since Tracking Signal of 6 month moving average is more closer to zero it is a better forecasting technique

32

Weighted Moving Average - Formula
• Weighted Moving Average = ? Ct Dt
n

t=1

Where, Ct = Fraction used as weight for period t 0 ? Ct ?1

33

Problem – Weighted Moving Average
Month Demand (D) Moving Average (3 mth) 450 470 497 508 497 510 Moving Average Forecast (3 mth) 450 470 497 508 497

Jan Feb Mar Apr May Jun Jul Aug

450 440 460 510 520 495 475 560

Since it is a 3 month moving average, assume values of:

C1 = 0.25
C2 = 0.25 C3 = 0.5

Sep
Oct Nov Dec

510
520 540 550

515
530 523 537

510
515 530 523
34

Problem – Weighted Moving Average
Month Demand (D) MA (3 mth) 450 MA Forecast (3 mth) 3 mnth WMA 453

Jan Feb Mar

450 440 460

Apr
May Jun Jul Aug

510
520 495 475 560

470
497 508 497 510

450
470 497 508 497

480
503 505 491 523

Sep
Oct Nov Dec

510
520 540 550

515
530 523 537

510
515 530 523

514
528 528 541
35

Problem – Weighted Moving Average
Month Demand (D) MA (3 mth) 450 MA Forecast (3 mth) 3 mnth WMA 453 3 mnth WMA forecast -

Jan Feb Mar

450 440 460

Apr
May Jun Jul Aug

510
520 495 475 560

470
497 508 497 510

450
470 497 508 497

480
503 505 491 523

453
480 503 505 491

Sep
Oct Nov Dec

510
520 540 550

515
530 523 537

510
515 530 523

514
528 528 541

523
514 528 528
36

Practice Problem
Month Jan Feb Mar Apr May Jun Jul Aug Sep Demand (D) 125 135 130 120 115 140 135 110 120

Use Simple Moving Average and Weighted Moving average method for 2 months. Forecast and compare two methods. Assume appropriate values

Oct
Nov

120
140

Dec

145
37

Simple Exponential Smoothing - Formula

Ft = F t-1 + ?(Dt - Ft-1)
ft = Ft-1

OR

? (Dt) + (1 – ? ) Ft-1

Where, F = Simple Exponential average f = Forecast for time t D = Demand ? = Smoothing constant between 0 to 1
38

Problem – Simple Exponential Smoothing
Month Jan Feb Demand 97 93

A firm uses exponential smoothing method for forecasting. Try ? = 0.1 & F0 = 100

Mar
Apr May Jun Jul

110
98 104 103 99

Aug
Sep Oct Nov Dec

108
106 94 109 95
39

Problem – Simple Exponential Smoothing
Month Demand Exponential Avg (Ft) 100 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 97 93 110 98 104 103 99 108 106 94 109 95 99.7 99.03 100.73 99.91 100.32 100.60 100.44 101.20 101.68 82.11 84.8 85.82
40

Problem – Simple Exponential Smoothing
Month Demand Exponential Avg (Ft) 100 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 97 93 110 98 104 103 99 108 106 94 109 95 99.7 99.03 100.73 99.91 100.32 100.60 100.44 101.20 101.68 82.11 84.8 85.82 100 99.7 99.03 100.73 99.91 100.32 100.60 100.44 101.20 101.68 82.11 84.8
41

Forecast (ft)

Practice Problem
• A firm uses exponential smoothing method for forecasting, with ? = 0.2 The forecast for month of March was 500 units but actual demand turned out to be 460. Forecast demand in April. ft = F t-1 i.e f APR = F MAR Ft = ? (Dt) + (1 – ? ) Ft-1 FMAR = ? (DMAR) + (1 – ? ) FFEB F MAR = 0.2 (460) + (1-0.2) 500 F MAR = 492
42

Practice Problem
Month Jan Demand 122

Feb
Mar Apr May Jun Jul Aug Sep Oct Nov Dec

127
125 126 139 127 134 128 134 136 132 131

Given in table is the data for 1994. F0 = 150. Try ? = 0.1 and 0.3, which is a better value?

43

Exponential Smoothing with Trend (Winter’s)
Ft = ? (Dt) + (1 – ? ) (Ft-1 + Tt-1) Tt = ? (Ft – Ft-1) + (1 – ?) Tt-1 ft = Ft-1 + Tt-1

Where, F = Winters Exponential average f = Forecast for time t D = Demand ? = Smoothing constant between 0 to 1 T = Trend estimate at time t ? = Averaging fraction
44

Problem – Exponential smoothing with trend
Month Demand

Calculate forecast with: ? = 0.2 ? = 0.2 F0 = 480 T0 = 9

Jan
Feb Mar Apr May

460
510 520 495 475

Jun
Jul Aug Sep Oct

560
510 520 540 550

Nov
Dec

555
569

45

Problem – Exponential smoothing with trend
Month Demand Winter’s exp avg (Ft) Trend (Tt)

480
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 460 510 520 495 475 560 510 520 540 550 555 569 483.20 494.83 506.74 511.80 511.18 526.23 529.62 533.55 540.16 547.43 554.35 562.72

9
7.84 8.60 9.26 8.42 6.61 8.30 7.32 6.64 6.63 6.76 6.79 7.11
46

Problem – Exponential smoothing with trend
Month Demand Winter’s exp avg (Ft) Trend (Tt) Winter’s Forecast (ft) 489.00 491.04 503.43 516.00 520.22 517.79 534.53 536.94 540.20 546.79 554.19 561.15
47

480
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 460 510 520 495 475 560 510 520 540 550 555 569 483.20 494.83 506.74 511.80 511.18 526.23 529.62 533.55 540.16 547.43 554.35 562.72

9
7.84 8.60 9.26 8.42 6.61 8.30 7.32 6.64 6.63 6.76 6.79 7.11

Practice problem
Month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Demand 128 136 137 141 157 148 158 155 164 169

Given data is for year 1994. Calculate forecast with: ? = 0.2 ? = 0.05 F0 = 130 T0 = 0

Nov
Dec

168
160
48

Exponential smoothing with seasonality
Ft = ? It = ? Dt It-m Dt Ft + (1-?) Ft-1 + (1-?) It-m

ft+1 = Ft x It+1-m Where; It-m = Index calculated m=12 months ago for monthly forecast, m=4 quarters ago for quarterly forecast ? = smoothing constant, normally ? 0.05
49

Prob - Exponential smoothing with seasonality
Demand Month Jan Feb Mar Apr May Jun Jul Aug Sep Oct 1993 80 75 80 90 115 110 100 90 85 75 1994 100 85 90 110 131 120 110 110 95 85

The table shows demand data of 1993 & 1994. Forecast for the year 1995. Other data: ? = 0.1 , ? = 0.05 , FDEC94 = 94 Next Step: Calculate average demand of 1993 & 1994 and average monthly demand

Nov
Dec

75
80

85
80
50

Prob - Exponential smoothing with seasonality
Demand Month Jan Feb Mar Apr 1993 80 75 80 90 1994 100 85 90 110 Average Demand 90 80 85 100

Avg Monthly Demand = 1128 / 12 = 94

May
Jun Jul Aug Sep Oct Nov Dec

115
110 100 90 85 75 75 80

131
120 110 110 95 85 85 80

123
115 105 100 90 80 80 80

Next Step: Calculate Seasonal Index It = Dt / Ft

51

Prob - Exponential smoothing with seasonality
Demand Month Jan Feb Mar Apr 1993 80 75 80 90 1994 100 85 90 110 Average Demand 90 80 85 100 Seasonality Index (It) 0.957 0.851 0.904 1.064

The demand for 1995 is given as:

May
Jun Jul Aug Sep Oct Nov Dec

115
110 100 90 85 75 75 80

131
120 110 110 95 85 85 80

123
115 105 100 90 80 80 80

1.309
1.223 1.117 1.064 0.957 0.851 0.851 0.851
52

Prob - Exponential smoothing with seasonality
Month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Seasonality Index (It-m) 0.957 0.851 0.904 1.064 1.309 1.223 1.117 1.064 0.957 0.851 0.851 0.851 Demand (Dt) 1995 95 75 90 105 120 117 102 98 95 75 85 75
53

Next Step: Calculate Ft for 1995 using formula Ft = ? Dt It-m + (1-?) Ft-1

Prob - Exponential smoothing with seasonality
Month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Seasonality Index (It-m) 0.957 0.851 0.904 1.064 1.309 1.223 1.117 1.064 0.957 0.851 0.851 0.851 Demand (Dt) 1995 95 75 90 105 120 117 102 98 95 75 85 75 Average (Ft) 94.50 93.86 94.43 94.86 94.54 94.65 94.32 94.10 94.62 93.37 94.56 93.91
54

Next Step: Calculate Forecast values for 1995 using formula: ft+1 = Ft x It+1-m

Prob - Exponential smoothing with seasonality
Month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Seasonality Index (It-m) 0.957 0.851 0.904 1.064 1.309 1.223 1.117 1.064 0.957 0.851 0.851 0.851 Demand (Dt) 1995 95 75 90 105 120 117 102 98 95 75 85 75 Average (Ft) 94.50 93.86 94.43 94.86 94.54 94.65 94.32 94.10 94.62 93.37 94.56 93.91 Forecast (ft) 89.96 80.42 84.45 100.47 124.17 115.62 105.72 100.36 90.05 80.52 79.97 80.47
55

Next Step: Calculate It using formula It = ? Dt + (1-?) It-m Ft

Prob - Exponential smoothing with seasonality
Month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Seasonality Index (It-m) 0.957 0.851 0.904 1.064 1.309 1.223 1.117 1.064 0.957 0.851 0.851 0.851 Demand (Dt) 1995 95 75 90 105 120 117 102 98 95 75 85 75 Average (Ft) 94.50 93.86 94.43 94.86 94.54 94.65 94.32 94.10 94.62 93.37 94.56 93.91 Forecast (ft) 89.96 80.42 84.45 100.47 124.17 115.62 105.72 100.36 90.05 80.52 79.97 80.47 New Seasonality Index (It) 0.959 0.848 0.906 1.066 1.307 1.224 1.115 1.063 0.959 0.849 0.853 0.848
56

Practice Problem
Demand Month Jan Feb Mar Apr May Jun Jul Aug Sep Oct 2003 120 115 117 122 125 127 125 122 120 115 2004 130 121 125 122 122 120 125 130 133 130 2005 145 127 132 127 118 115 128 135 140 140

The table shows demand data of 2003, 2004 & 2005. Forecast for the year 2005. Other data: ? = 0.2 , ? = 0.05 , F0 = 130

Nov
Dec

117
120

127
127

135
130
57

Exponential smoothing with seasonality & trend (Winter’s complete model)
Ft = ? Dt It-m + (1-?) (Ft-1 + Tt-1)

Tt = ? (Ft – Ft-1) + (1 – ?) Tt-1 It = ? Dt Ft + (1-?) It-m

ft+1 = (Ft + Tt) x It+1-m
Consider values of ? = 0.2, ? = 0.05 and ? = 0.01
58

Prob – Smoothing with trend & seasonality
Demand ‘95 95 75 90 105 Seasonality Index ‘95 0.959 0.848 0.906 1.066 Demand ‘96 80 85 90 95

Month Jan Feb Mar Apr

Forecast the demand for 1996 where: F0 = 80 T0 = 4.5 ? = 0.2 ? = 0.05 ? = 0.01 Step 1: Calculate smoothing average and trend for each month of 1996
59

May
Jun Jul Aug Sep

120
117 102 98 95

1.307
1.224 1.115 1.063 0.959

100
100 95 95 90

Oct
Nov Dec

75
85 75

0.849
0.853 0.848

95
85 80

Prob – Smoothing with trend & seasonality
Month Demand ‘95 95 75 90 It-m Demand ‘96 80 85 90 Average Ft 80 Jan Feb Mar 0.959 0.848 0.906 84.284 91.066 96.403 Trend Tt 4.5 4.489 4.604 4.641

Now do forecasting for 1996 and calculate new seasonal index

Apr
May Jun Jul Aug Sep Oct Nov Dec

105
120 117 102 98 95 75 85 75

1.066
1.307 1.224 1.115 1.063 0.959 0.849 0.853 0.848

95
100 100 95 95 90 95 85 80

98.659
97.846 98.020 98.697 99.937 101.719 106.676 108.243 108.350

4.521
4.255 4.051 3.882 3.750 3.651 3.717 3.609 3.434
60

Prob – Smoothing with trend & seasonality
Month Demand ‘95 95 75 90 It-m Demand ‘96 80 85 90 Average Ft 80 Jan Feb Mar 0.959 0.848 0.906 84.284 91.066 96.403 Trend Tt 4.5 4.489 4.604 4.641 81.036 75.280 86.677 0.959 0.849 0.906 Forecast ’96 (ft) New Index (It)

Apr
May Jun Jul Aug Sep Oct Nov Dec

105
120 117 102 98 95 75 85 75

1.066
1.307 1.224 1.115 1.063 0.959 0.849 0.853 0.848

95
100 100 95 95 90 95 85 80

98.659
97.846 98.020 98.697 99.937 101.719 106.676 108.243 108.350

4.521
4.255 4.051 3.882 3.750 3.651 3.717 3.609 3.434

107.713
134.856 124.971 113.809 109.041 99.436 89.460 94.165 94.851

1.065
1.304 1.222 1.113 1.062 0.958 0.849 0.852
61 0.847

Problem – Smoothing with trend & seasonality
1992 1993 1994

Quarter 1
Quarter 2 Quarter 3 Quarter 4

146
96 59 133

192
127 79 186

272
155 98 219

Estimate forecast for 1995 using winter’s complete model with ? = 0.2 , ? = 0.1 and ? = 0.05

62

Problem – Smoothing with trend & seasonality
Ft = ? Dt It-m + (1-?) (Ft-1 + Tt-1)

Tt = ? (Ft – Ft-1) + (1 – ?) Tt-1 It = ? Dt Ft + (1-?) It-m

ft+1 = (Ft + Tt) x It+1-m

Here, F0, T0 and It-m (i.e I -3) are unknown. Lets calculate it first.
63

Problem – Smoothing with trend & seasonality
F0 = D – T0 (2.5) And F0 = D – T0 (6.5) for quarterly data for monthly data

Lets Calculate D for year 1992 and 1993 D1992 = 108.5 and D1993 = 146 Here we see the upward trend movement from 1992 to 1993 is = 146 – 108.5 = 37.5, hence quarterly movement (T0) = 9.38 So, F0 = 108.5 – 9.38 (2.5) = 85.05
64

Problem – Smoothing with trend & seasonality
Now, lets calculate the trend line sales estimate for 1992 & 1993 1992 Q1 = F0 + T0(1) = 85.05 + 9.38 = 94.43 1992 Q2 = F0 + T0(2) = 85.05 + 9.38 (2) = 103.81 and so on
1992
Quarter 1 Quarter 2 Quarter 3 Quarter 4 94.43 103.81 113.19 122.57

1993
131.95 141.33

From these trend estimates (table) we can develop initial seasonal indices as:
Index = Demand / Estimate

150.71 160.09

65

Problem – Smoothing with trend & seasonality
Index for Q1 of 1992 = 146 / 94.43 = 1.55

Q2 of 1992 = 96 / 103.81 = 0.92 and so on
1992 Quarter 1 Quarter 2 Quarter 3 Quarter 4 1.55 0.92 0.52 1.09 1993 1.46 0.90 0.52 1.13

Lets check our indices are correct or not
To check, take average of indices for 1992 and 1993 and calculate ? average
66

Problem – Smoothing with trend & seasonality
1992 Quarter 1 Quarter 2 Quarter 3 1.55 0.92 0.52 1993 1.46 0.90 0.52 Average 1.51 0.91 0.52

Quarter 4

1.09

1.13 ? Average

1.13 4.07

? Average = 4.07. It should have been 4, so there is a mistake in calculated indices. Lets introduce a correction factor and recalculate the indices

67

Problem – Smoothing with trend & seasonality
Correction factor = (4 / 4.07) = 0.983. Now recalculate the indices
1992 Quarter 1 Quarter 2 1.55 0.92 1993 1.46 0.90 Average 1.51 0.91 I t-m 1.51 x 0.983 = 1.48 0.91 x 0.983 = 0.89

Quarter 3
Quarter 4

0.52
1.09

0.52
1.13

0.52
1.13

0.52 x 0.983 = 0.51
1.13 x 0.983 = 1.11

Now we have values of all the unknowns F0, T0 and It-m (i.e I-3) and we can calculate Ft, Tt, It and also forecast for 1995

68

Problem – Smoothing with trend & seasonality
F1 = 0.2 (146 / 1.48) + (1 – 0.8)(85.05 + 9.38) = 95.27 T1 = 0.1 (95.27 – 85.05) + (1 – 0.1) 9.38 = 9.46

I1 = 0.05 (146 / 95.27) + (1 – 0.05) 1.48 = 1.48
. . . And so on till the value of F12, T12 and I12

69

Problem – Smoothing with trend & seasonality
Ft 0 1 2 85.05 95.27 105.36 Tt 9.38 9.46 9.53 It 1.11 1.48 0.89

3
4 5 6 7 8 9 10 11 12

115.05
123.64 132.37 141.90 152.01 162.74 174.60 182.31 191.92 199.92

9.54
9.45 9.38 9.39 9.46 9.59 9.82 9.61 9.61 9.48

0.51
1.11 1.48 0.89 0.51 1.11 1.48 0.90 0.52 1.11

Lets forecast for 1995
70

Problem – Smoothing with trend & seasonality
Forecast for Q1 of 1995 = f13 = (199.92 + 9.48) * 1.49 = 312 Forecast for Q2 of 1995 = f14 = (199.92 + (2 x 9.48)) * 0.90 = 197 Forecast for Q3 of 1995 = f15 = (199.92 + (3 x 9.48)) * 0.52 = 119 Forecast for Q4 of 1995 = f16 = (199.92 + (4 x 9.48)) * 1.11 = 264
71

Practice Problem
Month Jan Feb Demand’ 93 Forecast ‘93 97 93 110 98 130 133 129 138 136 124 100 100 100 100 102 104 106 108 110 112 Demand ‘94 78 0 55 75 87 0 73 0 0 0

Calculate Winter’s trend ratio and seasonality index. What is the forecast for Q1 of 1995?

Mar
Apr May Jun Jul

Aug
Sep Oct

Nov
Dec

139
125

114
116

0
53
72



doc_938724223.pptx
 

Attachments

Back
Top